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Abstract—Sparse representation methods have been researched
widely in recent years. Sparse representation classification meth-
ods, such as sparse representation classifier (SRC) and label-
consistent K-SVD (singular value decomposition) learn classifi-
cation parameters, dictionary, and sparse representation simul-
taneously, so that they find an optimal sparse representation
to discriminate categories. However, these classifiers use least
square error (LSE) strategy to design the classifiers. LSE of
the empirical risk is not optimal for classifiers because even
if a training sample correctly classified, it may increase the
empirical cost. We, therefore, introduce the hinge loss to design
the classifier. The hinge loss is employed in support vector
machines, and it shows better performance than LSE based
methods. We provide an optimization algorithm to minimize
the proposed criterion that is the linear combination of the
hinge loss and sparse representation error. Experimental results
show that the proposed method exhibited conventional sparse
representation classification methods.

I. INTRODUCTION

As the internet of things (IoT) grows, the redundancy of
data increases. Exploration of latent information is important,
and the sparse representation is one of the promising tools in
signal processing and machine learning. Sparse representation
compactly expresses data in a vector having a few non-zero
elements using an overcomplete dictionary, and it has been
widely applied in many fields such as image classification
and recognition, feature learning, image noise removal, and
sensing [1], [3]. Compressed sensing is a method to acquire
and reconstruct signals in compressed form using sparse
representation [3]. The dictionary learning methods such as K-
SVD (singular value decomposition) have also been proposed
to obtain the overcomplete dictionary using given dataset, and
applied to image compression and denoising [6].

For classification of redundant input data, sparse represen-
tation classification methods have been proposed. The sparse
representation classifier (SRC) classifies input vectors using
reconstruction residual of sparse representation for each class
[2]. The label consistent K-SVD (LC-KSVD) is a classification
method using K-SVD. LC-KSVD simultaneously minimizes
reconstruction error of the sparse representation, and empirical
classification error using class labels of training data [11].
LC-KSVD has been extended to the joint embedding and
dictionary learning (JEDL) and the locality preserving KSVD
(LP-KSVD) [4], [5]. However, these classifiers use the squared
error between class labels and the output of classifiers, that
does not evaluate misidentification directly. The squared error
may be increased even if a training data is correctly classified.

In this paper, we therefore, introduce the multiclass hinge
loss for sparse representation classifier. The hinge loss is
employed in support vector machines (SVMs) and shows
better performance than least square error for classification
problems since the hinge loss is always zero if a training data is
correctly classified with appropriate margin. We define a new
optimization criterion to minimize both reconstruction error of
the sparse representation and misidentification error using the
hinge loss. We provide an optimization algorithm to minimize
our criterion.

II. RELATED WORKS

We briefly introduce sparse expression methods of sparse
representation classifier (SRC), K-SVD and LC-KSVD1 and
LC-KSVD2.

A. Sparse representation classifier (SRC)

SRC is a classifier using the sparse representation [2]. First,
SRC obtains dictionaries D = [d1, . . . ,dK ] ∈ Rn×K for each
class using labeled training data, where n is the number of
input dimension, and K is the number of dictionary vectors
(atoms). For unknown input x, its sparse representation s is
obtained by,

min
s

∥Ds− x∥2 + λ1∥s∥1, (1)

where λ1 is a parameter for trading-off the reconstruction error
and the sparsity. Then, the residual ri(x) = ∥x−Dδi(s)∥2 is
obtained for each class i = 1, 2, . . . , C, where δi(s) is set to
zero except for non-zero elements of s associated with class
i ∈ 1, 2, ..., C. x is assigned to the class having the minimum
residual ri(x), i = 1, . . . , C.

B. K-SVD

K-SVD is a method to learn an overcomplete dictionary for
sparse representation by minimizing the reconstruction error
[6]. Let X = [x1, . . . ,xN ] ∈ Rn×N be a set of n-dimensional
training vector, where N is the number of training data. Then
the optimization problem of K-SVD is

min
D,S

∥X −DS∥2F , subject to ∥si∥0 ≤ T1, (2)

where S = [s1, . . . , sN ] ∈ RK×N is a matrix of sparse
vectors, ∥ · ∥0 is a l0 norm which is the number of non-zero
elements, T1 is the sparsity constraint factor.

K-SVD alternately updates S and D. The update of the
sparse matrix S by fixing the dictionary D is done for
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each column using some sparse coding algorithm such as the
orthogonal matching pursuit (OMP) [7]. The update of D is
done for each column of D, i.e., argmindi

∥X − dis̃
⊤
i −∑

j ̸=i dj s̃
⊤
j ∥2F , where s̃i is the ith row of S. The singular

value decomposition (SVD) is used to obtain di.

C. LC-KSVD

The label consistent K-SVD (LC-KSVD) is a classification
method using K-SVD [12]. LC-KSVD considers additional
two terms to be minimized.

min
D,S,A,W

∥X −DS∥2F + α∥Q−AS∥2F + β∥H −WS∥2F

subject to ∥si∥0 ≤ T1, i = 1, . . . , N.
(3)

Q ∈ RK×N is the discriminative sparse code of the input
signal for classification.

[Q]i,j =

{
1 (the class label of di and sj are the same)
0 (otherwise).

(4)

A ∈ RK×K is a linear transform, so that the sparse vectors
having the same class label are linearly transformed to similar
code vectors. α > 0 is a parameter to define the strength of
the second term.

The third term is to design a classifier. W = [w1, ...,wK ] ∈
RC×K is the classifier to be trained, and H = [h1, ...,hN ] ∈
RC×N is a class label matrix of input signals, i.e., the jth
element of hi is one if hi belongs the jth class, and otherwise
zero. β is a parameter to define the strength of the third term.
LC-KSVD1 is the case of β = 0, otherwise, it is denoted
by LC-KSVD2. Jiang et al. [12] provided a K-SVD based
algorithm to minimize the optimization problem (3).

For unknown input signal x ∈ Rn, its sparse representation
s ∈ RK is obtained. LC-KSVD2 estimates the class label as
the largest element of Ws. In the LC-KSVD1, the class label
is estimated in the same manner as SRC.

The squared error used in (3) is not optimal for classifica-
tion. Let us consider a position that Q or H is one. If AS
or WS has a value that is greater than one in the position,
the total cost increases although it is not disadvantageous for
classification. In a similar manner, if AS or WS has a value
that is smaller than zero in the position that Q or H is zero,
the total cost increases although it is not disadvantageous
for classification. Therefore, the squared error criteria do not
evaluate misidentification.

III. SPARSE REPRESENTATION CLASSIFIER USING HINGE
LOSS

We introduce the hinge loss to the sparse representation
classifier. The hinge loss directly evaluates the misidentifica-
tion, and is used in SVMs. Let y ∈ {−1,+1} be a binary
class label, x be corresponding input vector, and f(x) be a
decision function of a binary classifier, i.e. if f(x) > 0, x is

Fig. 1. hinge loss of binary classification
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Fig. 2. multiclass hinge loss

assigned to the positive class, and otherwise, x is assigned to
the negative class. The hinge loss is defined by

L(f) =

{
1− yf(x) (yf(x) ≤ 1)
0 (yf(x) ≥ 1).

(5)

If yf(x) > 0, the sample x is correctly classified by f . The
hinge loss has the margin one, and linearly give the penalty
of yf(x) ≤ 1 (Fig. 1).

The hinge loss is extended for multi-class problems. Let
fi(x) is the decision function for the ith class, i.e., x is
assigned to argmaxi=1,...,C fi(x). The hinge loss for multi-
class is

L(f) =max{0, 1− (fc(x)− v)}, (6)
v = max

i∈{1,...,C}\{c}
fi(x) (7)

where c is the class label of x. v is the maximum value
of decision functions of the other classes. If the difference
between the decision function value of the true class label c,
fc(x) and v is greater than one, L(f) linearly gives the penalty
(Fig. 2).

We define the linear multiclass decision function for sparse
vector s, fi(s) = w⊤

i s + bi, and let W = [w1, . . . ,wC ] ∈
RK×C , b = [b1, . . . , bC ] ∈ RC . Then the optimization
problem of the proposed method is

min
D,S,W ,b

J =

N∑
i=1

∥xi −Dsi∥2 + λ∥si∥1 + µL(W , b, si), (8)
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where L(W , b, si) is the multiclass hinge loss function.
We alternately update (W , b), si, i = 1, . . . , N , and D.

a) Update of W and b: Let us optimize J for W and
b while D and sn n = 1, . . . , N are fixed. Then the first and
second terms are constant for W and b. Then we consider the
subproblem,

min
W ,b

N∑
i=1

L(W , b, si). (9)

The multiclass hinge loss (6) can be rewritten by using slack
variable ξ,

L(f) =min ξ

subject to ξ ≥ 0

ξ ≥ 1− (fc(x)− fi(x)), i ∈ {1, . . . , C} \ {c},
(10)

Then the subproblem (13) is reduced to the following linear
programming,

min
W ,b,ξ

N∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , N

ξi ≥ 1− (wc −wk)
⊤si + (bc − bk),

i = 1, . . . , N, k ∈ {1, . . . , C} \ {c}.

(11)

The solution can be obtained by a solver such as GLPK.
Alternatively, this is a special case of multiclass SVM [13], and
its implementations such as liblinear [14] obtain the solution.

b) Update of sn: The sparse vector si can be optimized
for each i. We, here omit the subscript i, and let s = s+−s−,
(s+ ≥ 0, s− ≥ 0) and z = [s⊤+|s⊤−]⊤ ∈ R2K (z ≥ 0), where
“≥” is for each element of vectors. Then the second term, the
l1 regularization, of J can be rewritten to

∥s∥1 = min
z

1⊤
2Kz, subject to z ≥ 0, [IK | − IK ]z = s,

where 12K is a (2K)-dimensional vector whose elements are
one, and IK is the identity matrix of size K.

Let w̃i = [w⊤
i | − w⊤

i ]. Then the third term of J is
transformed by using Eq. (10),

L(W , b, s) =min ξ

subject to ξ ≥ 0,

ξ ≥ 1− (w̃c − w̃i)
⊤z + (bc − bi),

i ∈ {1, . . . , C} \ {c},

(12)

where c is the class label of x.
By letting z̃ = [z⊤|ξ]⊤ ∈ R2K+1, and D̃ = [D| − D],

the optimization problem (8) is reduced to the following
constrained quadratic programming,

min
z̃

z̃⊤
[
D̃⊤D̃ 02K

0⊤
2K 0

]
z̃ + [(λ1⊤

2K)− 2x⊤D̃|µ]z̃

subject to z̃ ≥ 0

[(w̃⊤
c − w̃⊤

i )|1]z̃ ≥ 1− (bc − bi)i ∈ {1, . . . , C} \ {c}.
(13)

c) Update of D: Since the second and third terms of J
are constant for D, D is updated by the least square,

Dnew =argmin
D

∥X −DS∥2F (14)

=XS⊤(SS⊤)−1. (15)

D is initiated by randomly selecting vectors from X ,
then D and S are initiated by the standard K-SVD [6]. We
summarize our algorithm in Algorithm 1.

Algorithm 1 Optimization algorithm of the proposed method
Require: X
Ensure: D,S,W , b

1: Initialize D(0) by selecting randomly from X
2: Compute D(0) and S(0) by using K-SVD
3: repeat
4: Update W (t), b(t) by (11) ;
5: for i = 1 to N do
6: Obtain z̃ by Eq. (13)
7: Update si = [IK | − IK ]z
8: end for
9: Compute D(t) by (15) ;

10: until J converges

IV. EXPERIMENT

We used the Isolet spoken letter recognition database. It has
150 subjects speaking the name of each letter of the alphabet
twice. The described features contain spectral coefficients,
contour features, sonorant features, pre-sonorant features, and
postsonorant features. The number of input dimension n is
617, and the number of classes C is 26. The speakers are
grouped into sets of 30 speakers each and are named Isolet 1
to Isolet 5. In the experiment, Isolet 1 to Isolet 5 are used
to evaluate the performance of sparse codes expression clas-
sifiers. We conducted five fold cross validation for Isolet 1 to
Isolet 5, i.e., each dataset is divided into five subsets, and four
subsets are used for training, and remaining one subset is used
for testing. We evaluated averaged classification accuracy for
five folds. α and β refer to the parameters the reference paper.
The sparsity T1 and dictionary vector K used grid search. For
the experiment the parameter setting was as follows; α = 3.0,
β = 4.0, the sparsity T1 = 10, and the number of dictionary
vectors K = 25.

We show the experimental results in Table. I. The classifi-
cation accuracy is almost the same for SRC, LCKSVD1 and
LCKSVD2.

Table. II represents the number of nonzero elements in
a sparse vector. We used OMP for SRC, LCKSVD1, and
LCKSVD2, that is, the number of nonzero elements is directly
determined by the hyperparameter. For this reason the number
of nonzero elements in sparse vectors are the same for SRC
and LC-KSVDs. The our method improves the identification
rate more than the related method. Moreover the number of
nonzero elements of the proposed method is large.
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TABLE I
CLASSIFICATION ACCURACY

Method
SRC LCKSVD1

Mean ±STD (%) Mean ±STD (%)
Isolet1 91.73±1.44 89.16±2.91
Isolet2 89.87±1.19 86.85±1.46
Isolet3 85.32±2.72 79.61±2.82
Isolet4 80.10±3.57 76.63±3.16
Isolet5 88.77 ±1.65 83.96±2.16
Mean 87.16±2.11 86.60±2.50

LC-KSVD2 Our Model
Mean ±STD (%) Mean ±STD (%)

Isolet1 90.57±2.10 95.83±0.32
Isolet2 87.56±1.45 91.45±1.17
Isolet3 81.73±1.63 87.65±2.40
Isolet4 79.59 ±1.14 88.38±0.55
Isolet5 86.01 ±0.85 86.71±2.36
Mean 84.85±1.43 90.04 ±1.36

TABLE II
NUMBER OF NON-ZERO IN SPARSE REPRESENTATION

SRC 10
LC-KSVD1 10
LC-KSVD2 10
Our method 11

V. CONCLUSION AND FUTURE WORK

We have proposed a sparse representation classification
method using multiclass hinge loss. The hinge loss directly
evaluate the empirical misidentification risk, and optimization
is reduced to a linear programming. We provided an algorithm
to minimize the criterion which is the linear combination of
sparse representation error and the hinge loss. The algorithm
alternately updates weights for classifier W and b, the sparse
representation S, and the dictionary D, thus the sparse rep-
resentation of input vector x is not only approximation of x,
but also discriminative representation.

Future works include the investigation of the relation be-
tween sparsity level, dictionary size, and classification accu-
racy, and a method using the l0 norm constraint.
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