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Abstract—Independent component analysis (ICA) deals with
the problem of estimating unknown latent variables (independent
components) from observed data. One of the previous studies
of ICA assumes a Laplace distribution on independent compo-
nents. However, this assumption makes it difficult to calculate
the posterior distribution of independent components. On the
other hand, in the problem of sparse linear regression, several
studies have approximately calculated the posterior distribution
of parameters by assuming a hierarchical model expressing a
Laplace distribution. This paper considers ICA in which a hier-
archical model expressing a Laplace distribution is assumed on
independent components. For this hierarchical model, we propose
a method of calculating the approximate posterior distribution of
independent components by using a variational Bayes method.
Through some experiments, we show the effectiveness of our
proposed method.

I. INTRODUCTION

Independent component analysis (ICA) deals with the prob-
lem of estimating unknown latent variables (independent com-
ponents) from observed data. It is applied to speech signal
processing, time series analysis, image feature extraction,
and so on (see, e.g., [6]). In ICA, independent components
are assumed to be mutually independent and nongaussian.
To give a model generality, many studies on ICA do not
explicitly assume a nongaussian distribution on independent
components.

On the other hand, when we have some prior knowledge of
independent components, the improvement of the estimation
accuracy is expected by using this prior knowledge. For this
reason, several studies (e.g., [5], [8], [10], [11], [12]) have
explicitly assumed a nongaussian distribution on independent
components. Especially, in [5], a Laplace distribution is as-
sumed for independent components. This is partly because a
distribution of image data and speech signal is empirically
known to have high kurtosis and a Laplace distribution is
widely used to express such a distribution. However, one prob-
lem is that we have difficulty deriving a posterior distribution
of independent components due to an absolute value in a
probability density function of a Laplace distribution.

A similar problem also arises in the problem of sparse linear
regression. That is, we cannot calculate a posterior distribution
of a parameter analytically when we assume a Laplace distri-
bution as a prior distribution of a parameter. Nevertheless, we
can approximately calculate the posterior distribution using
an EM algorithm, a variational Bayes method, and a Gibbs
sampling by assuming a hierarchical model. This is because a

Laplace distribution can be expressed as a mixture of Gaussian
distributions whose variances obey exponential distributions
(see, e.g., [2], [4], [7], [9]).

The preceding discussions are summarized as follows:
1) In ICA, the previous study [5] has assumed a Laplace

distribution on independent components. However, this
assumption makes it difficult to derive a posterior distri-
bution of independent components.

2) In the problem of sparse linear regression, it is possible
to calculate a posterior distribution of a parameter by
expressing a Laplace distribution as a hierarchical model.

In view of 1) and 2), we consider ICA in which a hier-
archical model expressing a Laplace distribution is assumed
on independent components. For this hierarchical model, we
derive an approximate posterior distribution of independent
components by using a variational Bayes method. The ICA
model that we consider can be seen as the problem of
dictionary learning. Thus, we discuss a relationship between
our study and the previous study [13] in which a hierarchical
model is assumed for the problem of dictionary learning.
Moreover, through some experiments, we show the effective-
ness of our proposed method.

The organization of this paper is as follows. Section II
formulates ICA model and describes a hierarchical prior
distribution of independent components. Section III compares
our study and the previous study [13]. Section IV derives an
approximate posterior distribution of independent components
by using a variational Bayes method. Section V describes our
experiments and Section VI discusses the experimental results.
Finally, Section VII concludes this paper.

II. HIERARCHICAL MODEL OF INDEPENDENT
COMPONENTS

Suppose we have N observed data x1,x2, . . . ,xN , where
xn = (x1n, . . . , xdxn)T ∈ Rdx for n = 1, . . . , N . We assume
that the observed data are expressed as a linear transformation
of independent latent variables called independent compo-
nents. That is, the observed data are expressed as

xn = Wun + εn, (n = 1, . . . , N) (1)

where W ∈ Rdx×du is a matrix which expresses a linear
transformation, un = (u1n, . . . , udun)T ∈ Rdu represents an
independent component, and εn = (ε1n, . . . , εdxn)T ∈ Rdx
is a noise vector whose component εin obeys a Gaussian
distribution N (εin | 0, σ2).
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Define X = (x1, . . . ,xN ) ∈ Rdx×N , U = (u1, . . . ,uN ) ∈
Rdu×N , and ε = (ε1, . . . , εN ) ∈ Rdx×N . Then, the model (1)
is expressed as

X = WU + ε. (2)

In this study, we assume the following three-layer hierarchi-
cal prior distribution on independent components. In the first
layer, we place a Gaussian distribution

p(un | λ) =

du∏
i=1

p(uin | λi) (3)

=

du∏
i=1

N (uin | 0, λi), (4)

where λ = (λ1, λ2, . . . , λdu)T ∈ Rdu . Next, in the second
layer, λ is assigned an exponential distribution

p(λ | α) =

du∏
i=1

p(λi | αi) (5)

=

du∏
i=1

Exp(λi | αi), (6)

where α = (α1, α2, . . . , αdu)T ∈ Rdu . Lastly, in the third
layer, α is assigned a Gamma distribution

p(α) =

du∏
i=1

p(αi) (7)

=

du∏
i=1

Gam(αi; a, b), (8)

where a and b are parameters of a Gamma distribution.
Integrating out λi, we obtain a Laplace distribution, i.e.,

p(uin | αi) =

∫
p(uin | λi)p(λi | αi)dλi (9)

is a Laplace distribution (see, e.g., [1]).
We assume that each component of the matrix W ∈ Rdx×du

obeys a Gaussian distribution N (wij | µ, τ2).

III. RELATIONSHIP WITH THE PREVIOUS STUDY IN THE
PROBLEM OF DICTIONARY LEARNING

The model (2) can be seen as the problem of dictionary
learning in the sense that we decompose the given data X
into the matrix W (which expresses the basis) and the sparse
matrix U (which expresses the coefficient). In view of this
observation, this section describes the relationship between
our study and the previous study [13] in which a hierarchical
model is assumed for the problem of dictionary learning.

In [13], the model (2) is assumed and the following two-
layer hierarchical prior distribution is considered. In the first
layer, a Gaussian distribution is placed on U , i.e.,

p(U | β) =

du∏
i=1

N∏
n=1

p(uin | βin) (10)

=

du∏
i=1

N∏
n=1

N
(
uin

∣∣∣∣ 0,
1

βin

)
, (11)

where β is a vector which has a component βin (i =
1, . . . , du, n = 1, . . . , N ). In the second layer, β is assigned a
Gamma distribution

p(β) =

du∏
i=1

N∏
n=1

p(βin) (12)

=

du∏
i=1

N∏
n=1

Gam(βin; c, d), (13)

where c and d are parameters of a Gamma distribution.
Integrating out βin, we obtain a student-t distribution, i.e.,

p(uin) =

∫
p(uin | βin)p(βin)dβin (14)

is a student-t distribution.
Thus, the differences between the previous study [13] and

our study are summarized as follows:
• In [13], the two-layer hierarchical model is assumed. A

variance parameter 1/βin of the matrix U is different
from each component uin as shown in (11). Further,
p(uin) is a student-t distribution as shown in (14).

• In our study, the three-layer hierarchical model is as-
sumed. A variance parameter λi of the matrix U is
different from each row as shown in (4). Moreover,
p(uin | αi) is a Laplace distribution as shown in (9).

IV. POSTERIOR DISTRIBUTION BASED ON A VARIATIONAL
BAYES METHOD

This study derives an approximate posterior distribution of
a true posterior distributuion p(W,U,λ,α | X) by using a
variational Bayes method [3]. In the approximation by the
variational Bayes method, the objective is to obtain an approx-
imate posterior distribution q?(W,U,λ,α) which minimizes
Kullback-Leibler (KL) divergence between the approximate
posterior distribution and the true posterior distribution. That
is, we aim to obtain

q?(W,U,λ,α)

= arg min
q(W,U,λ,α)

∫
q(W,U,λ,α) log

q(W,U,λ,α)

p(W,U,λ,α | X)
. (15)

However, it is difficult to carry out the minimization in
(15) for arbitrary probability distribution. Thus, we restrict
the optimization distribution to q(W,U,λ,α) which can be
factrized as

q(W,U,λ,α) = q(W )q(U)q(λ)q(α). (16)

Using this factorization, we can calculate the minimization in
(15) by updating q(·) iteratively. We denote by qt(W ), qt(U),
qt(λ), and qt(α) an approximate distribution of W , U , λ, and
α at t-th iteration, respectively. Then, the updates of posterior
distributions are given as follows [3]:

ln qt+1(W ) ∝ E
qt(U)qt(λ)qt(α)

[ln p(X,W,U,λ,α)], (17)

ln qt+1(U) ∝ E
qt(W )qt(λ)qt(α)

[ln p(X,W,U,λ,α)], (18)

ln qt+1(λ) ∝ Eqt(W )qt(U)qt(α)[ln p(X,W,U,λ,α)], (19)
ln qt+1(α) ∝ E

qt(W )qt(U)qt(λ)
[ln p(X,W,U,λ,α)]. (20)
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In the following, we describe the concrete update equations of
q(W ), q(U), q(λ), and q(α).

A. Update of q(W )

We denote by wj· the j-th row of W ∈ Rdx×du . From (17),
the update equation of q(W ) is given by

qt+1(W ) =

dx∏
j=1

N (wj·|b(t)j· A
(t), A(t)), (21)

where

A(t) =

(
1

σ2
Eqt(U)[UU

T ] +
1

τ2
I

)−1

(22)

and I ∈ Rdu×du is the identity metrix; b(t)j· denotes the j-th
row of

B(t) =
1

σ2
X(Eqt(U)[U ])T +

1

τ2
M (23)

and M ∈ Rdx×du is the matrix whose components are all µ.

B. Update of q(U)

From (18), the update equation of q(U) is given by

qt+1(U) =
N∏
n=1

N (un|µ(t)
n ,Σ(t)

n ), (24)

where

µ(t)
n =

1

σ2
Σ(t)
n (Eqt(W )[W ])Txn (25)

and

Σ(t)
n =

(
1

σ2
Eqt(W )[W

TW ] (26)

+diag

(
Eqt(λ)

[
1

λ1

]
, . . . ,Eqt(λ)

[
1

λdu

]))−1

. (27)

C. Update of q(λ)

From (19), the update equation of q(λ) is given by

qt+1(λ) =

du∏
i=1

GIG(λi | a(t)λi
, b

(t)
λi
, p

(t)
λi

), (28)

where GIG(x | a, b, p) denotes a generalized inverse Gaussian
(GIG) distribution

GIG(x | a, b, p) =
(a/b)p/2

2Kp(
√
ab)

xp−1 exp

{
−1

2
(ax+

b

x
)

}
(29)

and Kp(·) is a modified Bessel function of the second kind;
a
(t)
λi

, b(t)λi
, and p(t)λi

are given by

a
(t)
λi

= 2Eqt(αi)

[
1

αi

]
, (30)

b
(t)
λi

= Eqt(uin)

[
N∑
n=1

u2in

]
, (31)

p
(t)
λi

= 1− N

2
. (32)

D. Update of q(α)

From (20), the update equation of q(α) is given by

qt+1(α) =

du∏
i=1

GIG(αi | 2b, 2Eqt(λi)[λi], a− 1). (33)

V. EXPERIMENTS

To confirm the effectiveness of our proposed method, we
evaluated the estimation accuracy of independent components
for synthetic data. In the experiments, we set a = 0.5, b =
0.01, N = 50 and set the dimension of the observed data and
independent components as the following three conditions:

• Condition 1: dx = 10, du = 10,
• Condition 2: dx = 30, du = 30,
• Condition 3: dx = 50, du = 50.
In this experiment, independent components U∗ were

generated as follows: first, we generated parameters αi
(i = 1, 2, . . . , du) according to the gamma distribution
Gam(αi; 0.5, 0.01). Next using these parameters αi, we gen-
erated parameters λi (i = 1, 2, . . . , du) according to the
exponential distribution Exp(λi | αi). Then, using these
parameters λi, we generated independent components uin
(i = 1, 2, . . . , du, n = 1, 2, . . . , N) according to the Gaussian
distribution N (uin | 0, λi).

After setting independent components U∗ as above, we gen-
erated each component wij of the linear transformation matrix
W ∗ according to the Gaussian distribution N (wij |0, 1). Using
U∗ and W ∗, we generated the observed data X according
to (2). In the experiment, we generated 100 observed data
X1, X2, . . . , X100 according to X1 = W ∗U∗ + ε1, X2 =
W ∗U∗ + ε2, . . . , X100 = W ∗U∗ + ε100, where εi (i =
1, 2, . . . , 100) were generated independently according to the
standard Gaussian distribution.

Given the observed data, we repeated our proposed algo-
rithm until it converges. Then, we set the mean of q(U) (it is
denoted as Û ) as the estimate of the true independent com-
ponents U∗. We measured the estimation accuracy by using
the mean squared error (MSE) 1

Ndu
||U∗ − Û ||2F , where the

notation || · ||F denotes the Frobenius norm. In the experiment,
we derived the estimates Û1, Û2, . . . , Û100 from the observed
data X1, X2, . . . , X100. Then, we calculated the average of the
100 MSE 1

Ndu
||U∗−Û1||2F , 1

Ndu
||U∗−Û2||2F , . . . , 1

Ndu
||U∗−

Û100||2F .
For comparison, we also calculated the MSE for the Fas-

tICA algorithm [6], which is one of the major algorithms for
estimating independent components.

Table 1 shows the MSE of the previous method (FastICA)
and our proposed method.

VI. DISCUSSION

Compared with the FastICA algorithm, the MSE of the
proposed method is smaller in all conditions. In this exper-
iment, independent components were generated by the prior
distribution that the proposed method assumes. On the other
hand, the FastICA algorithm does not explicitly assume a
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TABLE I
MSE OF THE PREVIOUS METHOD AND THE PROPOSED METHOD

Proposed method FastICA
Condition 1 4.85× 10−8 2.57× 10−4

Condition 2 5.01× 10−7 2.03× 10−4

Condition 3 3.53× 10−7 2.02× 10−4

nongaussian distribution on independent components. This is
one of the reasons why the MSE of the proposed method is
smaller than the FastICA algorithm.

VII. CONCLUSION

We have discussed the problem of ICA in which the
hierarchical prior distribution on independent components is
assumed. Due to this hierarchical prior distribution, the ap-
proximate posterior distributions can be calculated by using
the variational Bayes method. Experiments results showed the
effectiveness of our proposed method.
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