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Abstract—This paper presents a novel deep neural network
architecture for transfer learning in acoustic models. A well-
known approach for transfer leaning is using target domain data
to fine-tune a pre-trained model with source model. The model
is trained so as to raise its performance in the target domain.
However, this approach may not fully utilize the knowledge of the
pre-trained model because the pre-trained knowledge is forgotten
when the target domain is updated. To solve this problem, we
propose a new architecture based on progressive neural networks
(PNN) that can transfer knowledge; it does not forget and can
well utilize pre-trained knowledge. In addition, we introduce an
enhanced PNN that uses feature augmentation to better leverage
pre-trained knowledge. The proposed architecture is challenged
in experiments on three different recorded Japanese speech
recognition tasks (one source and two target domain tasks). In
a comparison with various transfer learning approaches, our
proposal achieves the lowest error rate in the target tasks.

I. INTRODUCTION

Using deep neural network (DNN) based acoustic mod-
els [1] in automatic speech recognition (ASR) systems de-
mands training data for various domains as recently popular
voice assistant products will be used in various conditions.
Developers collect training data of a new domain so as to
improve system performance in that domain. The data is
combined with all data in hand and used to re-train an
existing multi-condition model. However, developers face two
problems as shown in Fig. 1. Some data can be lost due
to time limits for use (data containing personal information
often has relatively short storage life), and the model cannot
be re-trained with full training data when using approaches
designed for multi-condition training [2], [3] and multi-task
learning [4]–[6]. Additionally, these approaches incur huge
time costs if re-training attempts to utilize the full set of
training data. Given this background, we focus on a transfer
learning approach that leverages a model trained with source
domain data to achieve enhanced target domain performance.

Transfer learning [4]–[13] can utilize pre-trained knowl-
edge and so improves the performance in the target domain
compared to models trained using only target domain data.
A well-known approach for transfer leaning that uses only
target domain data is fine-tuning of a pre-trained model [7],
[8], called PT/FT. While PT/FT can raise ASR performance
in the target domain, it drops the knowledge accumulated in
the pre-trained model. We assume that the pre-trained model

Training	 Re-training	Added “Domain 2” data	

Model 
1	

Domain 1 

Training data 

Domain 1 

Domain 2 

Training data 

Model 
2	

Model 
1+2	

✖︎ Unable to re-train using full training data  
due to “Domain 1” data with time limits for use.	

ü   Utilize “Domain 1” model  
for training “Domain 2” model.	

✖︎ Re-training incurs huge time costs  
if all training data is used.	

Fig. 1. Facing real problems in re-building a model. When “Domain 2” data
is added, some data may be lost due to usage time limits (data containing
personal information often has relatively short storage life) such as “domain
1” data. Developers cannot utilize all training data if re-training approaches
designed for multi-condition training and multi-task learning are used. We
want to effectively utilize the pre-trained knowledge of “Domain 1” for
training “Domain 2” model.

should extract fixed features to preserve the accumulated
knowledge. Knowledge distillation is a domain adaptation
approach [10]–[13] that can be also used for transfer learning.
This approach distills useful knowledge from the pre-trained
model for inclusion in the target domain model. It works well
if the pre-trained model contains a large amount of knowledge.
We need a framework that allows even models trained with a
limited amount of data to achieve good performance. Moreover
the approaches of PT/FT and knowledge distillation do not
explicitly preserve the pre-trained knowledge in the target
domain model.

In order to perform transfer learning while keeping the pre-
trained knowledge, we focus on progressive neural networks
(PNN) [14]–[17] as they offer continual learning [14], [18],
[19], ensemble learning [20]–[22] and transfer learning si-
multaneously. PNN can be trained using just target domain
data without forgetting the pre-trained knowledge; the target
domain model is composed of a newly added model and a
frozen pre-trained model. In [16], PNN was applied to emotion
recognition and shown to yield better results than the PT/FT
approach. The results were very promising and indicated that
PNN can effectively transfer the pre-trained knowledge to
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the target domain task. In [17], PNN was applied to an
acoustic model and attained the best performance compared
with multi-conditioned- and dependent-conditioned-models.
Unfortunately, the performance improvement was slight be-
cause PNN cannot fully leverage the pre-trained knowledge.
We assume that PNN should also receive explicitly augmented
input feature that reflects the source domain. In this paper,
we propose a new PNN-based archictecture that can utilize
pre-trained knowledge more fully than the conventional PNN.
Our proposal, an advanced variant of PNN, is called FPNN; it
represents the combination of PNN with feature augmentation
using bottleneck features [23], [24].

We demonstrate the proposed architecture in experiments on
three recorded Japanese ASR tasks in which one is used as the
source domain and the other two are used as target domains.
We show that the lowest error rate is achieved by the proposed
FPNN in both target domains. Moreover, experiments show
that PNN-based approaches are robust to the order in which
knowledge is sequentially transferred to the new domain.

II. RELATED WORK

Continual learning is another way to perform knowledge
transfer [14], [18], [19]. In continual learning, models are
continuously trained with new domain data while retaining the
performance of the pre-trained domain. However, its success
against real problems is doubtful because the model forgets
the pre-trained knowledge. One continual learning approach is
elastic weight consolidation (EWC) [18]. EWC can repeatedly
re-train a model using new domain data while forgetting less
of the pre-trained knowledge. Unfortunately, the new domain
performance of EWC is worse than the same model trained
with only the new domain data. PathNet [19] can utilize pre-
trained knowledge for training a new domain model, but it
needs many pre-trained models to cover various conditions
as training involves combinations of parameters, the paths
and weights across the models. Our final goal is to achieve
continual learning that offers the best performance on both
the new domain and the pre-trained domains. Although PNN-
based approaches that can retain pre-trained knowledge are
also regarded as continual learning, this paper focuses on
improving the performance in the new domain.

III. APPROACHES FOR TRANSFER KNOWLEDGE

A. Pre-training and fine-tuning (PT/FT)

Pre-training and fine-tuning (PT/FT) [7], [8] is a very
popular and simple approach. It is performed by using target
domain data to fine-tune a pre-trained model. The fine-tuned
model offers better performance in the target domain, because
the initial parameters of PT/FT are better trained than the ones
with random initialization.

B. Knowledge distillation (KD)

Knowledge distillation (KD) [10] is an approach for domain
adaptation. We use the implementation presented in [12]. The
KD approach uses two models: student and teacher models.
The student model is trained using hard target yi and soft
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Fig. 2. Architecture of three column feature augmented DNN (FDNN).
Columns one and two on the left (dashed arrows) are trained on domain 1 and
2, respectively, and frozen while training on domain 3. Bottleneck features (red
dashed arrows) of each pre-trained column are utilized for robustly training
lower layers in the third column.

target qi. The hard target yi is an element of one-hot vector
y which has K dimensions corresponding to the number of
output classes. If the i-th class is correct, yi is 1, otherwise 0.
The soft target qi in q is a K dimension vector, the same as
y, and is computed by using the output (softmax) probability
of the teacher model given by:

qi =
exp(zi(x)/T )∑K
j=1 exp(zj(x)/T )

, (1)

where x and zi(x) are the input feature and the pre-softmax
output of the i-th class of the teacher model, respectively; T
is temperature. As T becomes large, q approaches a uniform
distribution. The student model is trained using the target
labels of yi and qi so as to minimize the following loss
function:

L = −(1− ρ)
K∑
i=1

yi log pi(x)− ρ
K∑
i=1

qi log pi(x), (2)

where pi(x) is the output probability of the i-th class in the
student model. The first and second terms represent cross
entropy loss function of soft and hard targets, respectively;
ρ is the weight of the hard and soft cross entropy losses.

C. Feature augmented DNN (FDNN)

Feature augmented DNN (FDNN) is simple approach and its
architecture is described in Fig. 2. First and second columns
from left side are trained on domain 1 and 2, respectively,
and frozen while training on domain 3. We concatenate
network input and bottleneck features [23], [24] derived from
previous column DNNs when creating a new column DNN.
In Fig. 2, red dashed arrows represent bottleneck features.
The augmented input feature h̄

(n)
0 of each column DNN is

described as follows:

h̄
(n)
0 =

[
h⊤
0 , h

(1:n−1)⊤

l

]⊤
, (3)

where l and n are the indices of layers and columns, respec-
tively. h̄(n)

0 is the super vector formed by concatenating the
network input h0 and bottleneck features h(1:n−1)

l in l-th layer
of all pre-trained column DNNs from 1 to n− 1.

The PT/FT approach can be applied for FDNN with the
difference that the new column DNN parameters are copied
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Fig. 3. Depiction of a three column progressive neural network (PNN).
Columns one and two on the left (dashed arrows) are trained on domain 1 and
2, respectively, and frozen while training on domain 3. The third column is
added for the third domain, for which all pre-trained columns are leveraged.

from second to last hidden layers because the dimension of the
input layer is different due to the concatenation with bottleneck
features.

D. Progressive neural network (PNN)

The progressive neural network (PNN) [14] architecture
consists of multi-column DNN as depicted in Fig. 3. In the
PNN, the new column is added when transferring knowledge
to a new domain. In other words, the number of columns
corresponds to the number of domains. At the first step, the
PNN is represented as a single column, whose structure is the
same as the standard fully connected DNN. When transferring
knowledge in support of a new domain, an additional column
is concatenated to the pre-trained columns. In this case, the
number of units and layers in the new column can be arbitrarily
decided. The new column is trained with only the new domain
data set the while pre-trained columns are frozen. Therefore,
the PNN can be trained for the new domain without forgetting
the knowledge in the previous domains. This paper does not
use the adaptation layer presented in [14].

In each hidden layer, lateral connections from previous
columns are leveraged for computing individual hidden ac-
tivations. The hidden activation in the l-th layer of the n-th
column, h(n)

l , is calculated as:

h
(n)
l = f

(
W

(n)
l h

(n)
l−1 +

∑
m<n

V
(n:m)
l h

(m)
l−1

)
, (4)

where l ≤ L, m < n ≤ N are the indices of layers and
columns, respectively. h(n)

l ∈ Ru
(n)
l and W

(n)
l ∈ Ru

(n)
l ×u

(n)
l−1

are the hidden activation with u
(n)
l being the number of units

and the weight matrix of the l-th layer of the n-th column,
respectively, V

(n:m)
l ∈ Ru

(n)
l ×u

(m)
l−1 are the weights for the

lateral connections from the l-1-th layer of the m-th column
to the l-th layer of n-th column; h0 is the network input,
and the bias terms are omitted. f is a non-linear function e.g.
sigmoid. The PNN approach makes the model parameters of
the hidden layers larger when adding domains i.e. increasing
“
∑

l u
(n)
l × u

(n)
l−1 +

∑
l

∑
m<n u

(n)
l × u

(m)
l−1” with the addition

of each new column.
In addition, the PNN can be combined with the PT/FT

approach when the number of units and layers in a new
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Fig. 4. Architecture of three column feature augmented PNN (FPNN). The
differences from PNN are shown by the red dashed arrows which represent
bottleneck features. Bottleneck features are utilized to robustly train lower
layers in the third column.

column equals those in the pre-trained column. The operation
is performed by initializing a new column using the previous
column.

E. Feature augmented PNN (FPNN)

In [14], the lower layers of the newer domain were consid-
ered to have less influence on the output than that of the first
column. We assume that the lower layers of the newer domain
should also receive pre-trained knowledge if the parameters
are randomly initialized. Based on the above intuition, we
propose the new architecture, FPNN. It is composed of two
techniques; PNN and feature augmentation using bottleneck
features. Fig. 4 shows the FPNN trained with third domain
data; the red dashed arrows represent bottleneck features. The
difference between FPNN and PNN is the use of bottleneck
features with the network input so as to improve the training
of the lower layers. The augmented input feature is the same
as FDNN in Eq. (3).

The PT/FT approach can be also applied for PFNN but
the new column DNN parameters are copied from second to
last hidden layers because the dimension of the input layer is
different due to the concatenation of the bottleneck features.

IV. EXPERIMENTS

A. Experimental conditions

1) Data: To establish a common setup, we built and tested
models using data generated from Japanese voice search
commands for smartphone use. Three domain data sets (clean,
car noise and distant talk) were used in the experiments.
All data sets were recorded in a real room, car and distant
talk environment, respectively. The SNR of car noise varied
significantly (0 - 15 dB), while the distance in distant talk was
2.5m. The clean, car noise and distant talk data sets were split
to yield 90, 70 and 60 hours for training, 10 hours for each
development set, and one hour for each evaluation set. The
input feature for all DNNs was 40 dimensional FBANK with
the temporal context of 11 frames; dynamic features (∆ and
∆∆) were used.

2) Common setup: All acoustic models shared the same
configuration as regards the fully connected hidden layers and
output layers. The nodes in the fully connected hidden layers
and output contained 512 and 3072 nodes, respectively. The
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TABLE I
CERs [%] for evaluation sets of clean, car noise and distant talk. The

difference between model architectures in the 1st column is only the number
of units per layer. Each model (6 models were built) was trained and

evaluated using only target domain data. We argue that the number of model
parameters, i.e. units, has no effect on the performance in each evaluation.

Model Evaluation set CERs
clean car noise distant talk

Single(512) 9.0 21.6 14.7
Single(1024) 9.1 21.4 15.0

number of all DNN hidden layers was six and all bias terms
were omitted. All architectures had a bottleneck layer, the fifth
hidden layer, with 64 units. Only added target domain data
was used in model retraining. The initial learning rate, 0.08,
was halved if the frame accuracy of the development data
was lower than the accuracy of the previous epoch. Training
was terminated when the learning rate fell under 0.0008.
As the optimizer, we used stochastic gradient descent (SGD)
with a momentum value of 0.9 and a batch size of 128. We
used Chainer [25] for DNN implementation and training. The
language model was 3-gram and trained using a 1M Japanese
web text corpus. For decoding, we used VoiceRex [26], [27].
We evaluated performance in terms of character error rate
(CER).

3) Specific network architecture for each experiment:
“Single” represents a model trained using only data from one
domain with 512 or 1024 units per layer except the fifth
layer which had 64 units. The parameters in “Single” were
randomly initialized. In the KD approach, the parameters of
temperature T and loss weight ρ were 3 and 0.1, respectively.
The parameters of new column DNN and lateral connections
of FDNN, PNN and FPNN were randomly initialized. We
trained the models sequentially, i.e. starting from an initial
model for domain 1, we create a model for domain 2. That
model is then used as an initial model for training the model
for domain 3. After training of each domain was completed,
the parameters of PT/FT and student model of KD, called
KD+PT/FT, were set at the corresponding parameters of the
previous model. We also used the PT/FT approach to add
new column DNN parameters for FDNN, PNN and FPNN
(see the bottom of subsection III-C, III-D and III-E), called
FDNN+PT/FT, PNN+PT/FT and FPNN+PT/FT respectively.

B. Results

Table I shows the results of Single DNN trained and
evaluated with only each target domain data (clean, car noise
and distant talk). The model architectures in 1st column are
different only in the number of units per layer, that is 512 or
1024 units. The CER results in each domain are almost the
same. We argue that the number of units per layer doesn’t
alter the CER because FDNN, PNN and FPNN increase the
parameters due to the addition of column DNNs with new
domains.

The 1st column in Table II shows approaches for transfer
learning; we regard PT/FT as the baseline in this paper. The
2nd to 4th columns of Table II show the curriculum, the

TABLE II
Curriculum and CERs [%] for evaluation sets of clean, car noise and

distant talk from 2nd to 4th columns. The curriculum, which is the order in
which existing knowledge is transferred to a new domain, is decided by the
amount of training data. The 1st column indicates approaches for transfer

learning and 1st model parameters of clean were randomly initialized.

Approach Curriculum and evaluation set CERs
1. clean 2. car noise 3. distant talk

PT/FT

9.0

19.6 13.3
KD+PT/FT 22.6 13.5
FDNN 19.5 13.3
FDNN+PT/FT 19.3 13.1
PNN 21.4 14.2
PNN+PT/FT 18.8 12.6
FPNN 19.0 12.8
FPNN+PT/FT 18.6 12.1

TABLE III
Curriculum and CERs [%] for evaluation set of clean, car noise and distant

talk from 2nd to 4th columns. The curriculum is decided by the Single
CERs. We assume that FDNN-, PNN-, and FPNN-based architectures are
less affected by the curriculum order of transfer knowledge than PT/FT.

Model Curriculum and evaluation set CERs
1. clean 2. distant talk 3. car noise

PT/FT

9.0

13.9 21.0
KD+PT/FT 14.0 23.4
FDNN 13.5 19.4
FDNN+PT/FT 13.2 19.1
PNN 13.9 21.1
PNN+PT/FT 12.7 19.1
FPNN 12.7 19.2
FPNN+PT/FT 12.3 18.7

order in which knowledge is transferred to a new domain,
and each evaluation set CERs, respectively. The 1st model
parameters trained with clean were randomly initialized. In
all approaches except KD+PT/FT approach, the targets of
car noise and distant talk have better CERs than Single.
These results confirm that the transfer learning approach is
very important and effective for acoustic models. Only the
KD+PT/FT approach does not work well as transfer learning
because the KD+PT/FT approach yields a large model trained
with various domains whereas the pre-trained model has little
knowledge. The KD+PT/FT approach works well if the initial
model is trained with a large amount of data [12]. FDNN and
FDNN+PT/FT have better CERs than baseline. PNN CERs are
better than the Single results but worse than those of PT/FT.
Applying PT/FT to PNN improves the CERs of PNN+PT/FT
significantly. We assume that PNN with PT/FT and feature
augmentation can effectively supply pre-trained knowledge
to a new column DNN because the initialized parameters in
lower layers are better trained than the randomly initialized
parameters. FPNN, which adds input bottleneck features to
the network input of PNN, has better CERs than PT/FT
so FPNN solves the above the problem. Moreover, of all
approaches, FPNN+PT/FT attained the best CERs. Comparing
FPNN+PT/FT with baseline, the relative error reductions for
car noise and distant talk as target domains were 5.1% and
9.1%, respectively.

Table III also shows the curriculum and each evaluation
set CER. In contrast to the experiments of Table II, here
the order of domain training is different, i.e. we start with
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clean domain, then distant talk and finally car noise. On the
whole, the tendency of each evaluation set CER is worse
than Table II which implies the importance of the amount
of training data for the target domain. From the results of
Table II and Table III, we argue that FDNN-, PNN-, and
FPNN-based approaches are more robust than PT/FT to the
curriculum used for transfer knowledge. This robustness is
very important because the developers do not know the order
in which data will be added in real problems. We assume that
the transfer of fixed features in pre-trained knowledge to the
target domain model contributes to the robustness to the order
in which domain data is added. Relative to the baseline in
Table III, FPNN+PT/FT achieved the significant reductions in
relative error reductions for car noise and distant talk as target
domains of 11.5% and 11.0%, respectively.

V. CONCLUSIONS
In this paper we proposed a novel acoustic model trans-

fer learning approach based on progressive neural networks
(PNN); it can offer the acquisition of new domain knowledge
without forgetting the pre-trained knowledge. The proposed
approach (FPNN) is composed of PNN and feature augmen-
tation by bottleneck features so as to better leverage the
pre-trained knowledge. Experiments on three real acoustic
domains (clean, car noise, and distant talk) showed that
FPNN could effectively transfer pre-trained knowledge to the
new target domain and achieve lower error rates than the
well-known approach of pre-training and fine-tuning (PT/FT),
which fine-tunes a pre-trained model for the target domain.
We also showed that PNN-based approaches are very robust
to the curriculum i.e. the order in which existing knowledge
is transferred to a new domain.

Future work includes model compression because PNN-
based approaches make the model parameters larger when
adding domains. We also plan to implement our proposal in
other kinds of neural networks, such as convolutional neural
networks and recurrent neural networks.
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