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Abstract—Video frame interpolation is a traditional computer
vision task, which aims to generate intermediate frames between
two given consecutive frames. Many algorithms attempt to solve
this task relying on optical flow to compute dense pixel corre-
spondence. According to the estimated flow, the input images
are warped to the location of the interpolated frame, and then
blended together to generate synthesis frame. However, due to the
difficulty of flow estimation, this method always leads to blurry
region and visually unpleasant results. To overcome the limitation
of inaccurate flow estimation, we perform an end-to-end neural
network to improve interpolation results after warping, which
explicitly uses optical flow but not completely depends on it.
Moreover, we design a multi-scale dense network for frame
interpolation (FIMSDN), which not only makes full use of the
multi-scale information for large motion frame interpolation, but
also strengthens feature propagation. Specifically, a pre-trained
optical flow net is firstly utilized to produce the bidirectional
flow between two input frames. The input images are warped
to the middle frame by the estimated flow and then fed with
the original images into the FIMSDN to directly estimate the
in-between frame. Experimental results show the improvement
in terms of both objective and subjective quality by comparing
with other recent optical flow and convolutional neural network
(CNN) based methods.

I. INTRODUCTION

Video frame interpolation, a classic subject of computer
vision, aims to generate intermediate frames between given
two consecutive frames in a video sequence. This technique is
widely used in video frame rate conversion [7], slow motion
effects [15], as well as video compression [5]. Due to the effect
of motion complexity, occlusions, luminance changes and so
on, synthesis in-between frames is still a challenging problem.

Many algorithms attempt to solve the frame interpolation
task explicitly or inexplicitly relying on optical flow esti-
mation. Optical flow indicates the two dimensional apparent
motion field of space moving objects in image domain, which
can be regarded as a sub-problem of frame interpolation.
Some traditional methods [3] [10] entirely depend on the
flow estimation, which generate interpolated frames through
blending the warped input images based on the computed flow
fields. However, the quality of interpolation frame is sensitive
to the accuracy of estimated flow, which is a complex problem
and suffers from the factors of occlusion, illumination changes
and large motion. Lately, in order to overcome this limitation,
Meyer et al. [7] propose a phase-based image synthesis method
without the need for any form of explicit correspondence
estimation. While their method provides an efficient alternative

to traditional flow based algorithms, it only well suits for small
motion interpolation.

In recent years, deep learning, especially convolutional neu-
ral networks (CNNs), have been successfully utilized in many
computer vision tasks and achieved state-of-the-art results. For
optical flow estimation, FlowNet [8] proves the effectiveness
of CNNs in learning feature matching, and its successors
FlowNet2 [18] generates more smooth and accurate flow fields
than before. However, they are supervised methods which need
scarce ground truth of optical flow to train. For the frame
interpolation task, Long et al. [9] propose an encoder-decoder
architecture to synthesis in-between frames directly, but their
ultimate goal is to estimate optical flow. As a result, their
synthesis results are visually blurry. In [16], flow estimation
and pixel synthesis are merged into a single convolution
process to generate in-between frames. However, this method
needs large kernels to handle large motion. Liu et al. [15]
introduce a deep voxel flow (DVF) method to learn a fully
differentiable network for frame synthesis. While they design
a voxel flow layer like optical flow field instead of directly
estimate flow, their method is still limited in the accuracy of
voxel flow, and the result of voxel flow layer is inferior to
FlowNet [8].

Therefore, according to the flow estimation based frame
synthesis algorithm, we propose an optical flow-guided CNN
based method, which explicitly uses optical flow but not
completely depends on it. Specifically, a pre-trained flow
estimation network is cascaded with our frame interpolation
network, which can provide more motion information and
reduce the complexity of later training. In addition, to avoid
the spatial distortion brought by errors in flow fields, we
propose a multi-scale dense network for frame interpolation
(FIMSDN), which can directly generate visually pleasant in-
between frames. In the framework of FIMSDN, a multi-scale
model is utilized to make full use of information from fine
to coarse level, which can effectively improve the results of
large motion frame interpolation. Instead of just inputting
different scale images for training, we extract multi-scale
perspective information from original input images to preserve
high resolution information. And different from the encoder-
decoder model, which consists of many sub- and up-sampling
layers, we progressively improve features in each scale via
a densely connected architecture. The dense connection is
adopted to propagate the previous features to the current
state, because convolutions only take local information into
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Fig. 1. Overview of the proposed method.

account. Finally, each scale features are gathered to synthesis
intermediated frame.

Our method can be trained end-to-end by sampling triplets
of consecutive video frames from any natural video sequences.
Experimental results show the improvement in terms of both
objective and subjective quality by comparing with other
recent optical flow and CNN based methods on different video
scenarios.

The rest of this paper is organized as follows. Section II
elaborates a detailed description of the proposed scheme. The
evaluation of our model and experimental results are presented
in Section III. Finally, conclusions are drawn in Section IV.

II. PROPOSED SCHEME

Our frame interpolation method is an optical flow-guided
multi-scale dense network architecture, which named as OF-
FIMSDN.The proposed scheme benefits from the pre-trained
flow estimation network and blends the warped frames visually
natural through a multi-scale densely connected network. Any
video can be processed to be training samples for the task
of frame interpolation. The overview of the proposed method
is illustrated in Fig. 1. In this section, we will introduce the
proposed method in detail.

A. Optical Flow-Guided

Taking two consecutive frames Ii and Ij as an an example,
the optical flow from Ii to Ij denotes as ∆i→j = (µx, νy),
where µx and νy represent the pixel-wise displacements in
the directions of x and y, respectively. According to the flow
∆i→j , a warping operation W (·) can be adopted to warp Ij
to Ii via bilinear interpolation, which can be written as:

Ij→i(x, y) = W (Ij ,∆i→j) = Ij(x+ µx, y + νy). (1)

In our scheme, given triplets of consecutive frames I1, I2,
and I3, our goal is to reconstruct the in-between frame I2 from
input two frames I1 and I3. We first estimate the bidirectional
optical flows based on a pre-trained flow net, which provides a
great starting point for the following frame synthesis network.
We define the computed bidirectional flow fields from I1 to
I3 and I3 to I1 respectively as follows:

∆1→3 = F(I1, I3),∆3→1 = F(I3, I1). (2)

where F represents the mapping function of the network
for optical flow estimation. Here, we choose FlowNet2 [18]
to compute initial bidirectional flows, which generates more
smooth and accurate flow fields.

The optical flow provides a set of mapping functions to
estimate the in-between behavior of each object from the pixels
of input images. Meanwhile, bidirectional flow fields further
ensure the accuracy of the unidirectional warping. We then
warp the input images to the location of in-between frame as:

I1→2 = W (I1,∆3→1/2),

I3→2 = W (I3,∆1→3/2).
(3)

B. Multi-scale Dense Network for Frame Interpolation

Though the computed flow fields can be used to synthesize
the intermediate frames, the results may generate motion blur
and artifacts. Therefore, we proposed a multi-scale dense
network for frame interpolation (FIMSDN), which is adopted
as a refined network to optimize the quality of synthesized
frames. The network is trained to directly generate in-between
frames, whose mapping function g(·) can be written as:

Ĩ2 = g(I1, I3, I1→2, I3→2, θ). (4)

where θ is the network parameter. To avoid the spatial distor-
tion and occlusions for optical flow warping, except the warped
images I1→2 and I3→2, the original images I1 and I3 are also
concatenated as an input to offer more image information for
the frame interpolation network.

The network architecture is shown in Fig. 1. For the design
of FIMSDN, we utilize the framework of multi-scale feature
maps to maintain coarse to fine level features. Meanwhile,
dense connection is adopted to eliminate the limitation of
short-range dependencies caused by convolutions with small
kernel size. Specifically, as shown in Fig. 1, in the first
column, we first extract feature maps from input images using
a 7× 7 convolutional layer followed by a Parametric Rectified
Linear Unit [22] activation (red line, denoted as Conv(7× 7)-
PReLU). It is noted that small kernel size is adverse to the
feature extraction of large motions, and PReLU is utilized as
an activation function after the convolutional layers to realize
nonlinear mapping, except the last layer in our network. And
then a downscaling layer (purple line) is utilized to get coarse
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level feature with Conv(3× 3) of stride 2. Three scale feature
maps are extracted with number of 16, 32, and 64, respectively.
In the horizontal dimension of each scale, three dense blocks
are adopted to maintain features reuse and strengthen feature
propagation through corresponding scale. The pattern of dense
block is denoted as Conv(1×1)-PReLU-Conv(3×3)-PReLU.
Distinct from the design of dense block in DenseNets [19],
we remove the Batch Normalization (BN) [13] following the
findings in [17], and use PReLU activation to realize nonlinear
mapping. At last column, coarse feature maps are upscaled
to the size of original image and concatenated with the fine
scale features. Finally, the synthesized intermediate frame is
obtained by further convolution on the fusion feature maps.

C. Loss Function

FIMSDN is designed in order to make the synthesized frame
Ĩ2 as similar as possible to the in-between frame I2. Therefore,
a corresponding optimization goal is needed for our network
by minimizing a distance Lp (p=1 or p=2) between the original
and reconstructed frame as follows:

Lp(Ĩ2, I2) = ||Ĩ2 − I2||
p

p. (5)

In [11], it has been reported that L2 loss always leads
to unnatural blurriness of the output image. Meanwhile, the
Charbonnier loss, a differentiable variant of L1 norm, is
commonly used in flow estimation tasks [12] and has been
confirmed can lead to a robust result than the L2 loss. The
Charbonnier loss function is:

ρ(x) =
√
x2 + ϵ2. (6)

where x represents the difference between the original and
synthesized frame, and ϵ is a small hyperparameter to control
the Charbonnier penalty is always non-zero. Here, the loss
function can be denoted as:

L(Ĩ2, I2) =

√
||Ĩ2 − I2||

2
+ ϵ2. (7)

where ϵ set to 0.01 to train our frame interpolation network.

III. EXPERIMENTAL RESULTS

In this section, we first introduce training datasets and de-
tails of our network. Then, in order to evaluate the performance
of our video frame interpolation scheme, we conduct exper-
imental comparisons against others, including a few optical
flow based methods [1], [10], [18], the recent phase-based
interpolation method [7] and state-of-the-art deep learning
based method [16].

A. Datasets

The proposed method can be trained end-to-end using any
video data by sampling triplets of consecutive video frames.
UCF101 [4] video dataset, which has been split into training
and testing set, is used in our scheme. It contains of 101 action
classes that is benefit for the network to learn motion features.

For our training, triplets are extracted by taking three
consecutive frames from all videos, where the first and last
frames serve as inputs to our network and the in-between

TABLE I
PSNR AND SSIM COMPARISONS ON UCF101 TEST DATASET

Methods PSNR/dB SSIMfull mask
Farneback[1] 34.779 36.637 0.966
EpicFlow[10] 34.817 36.531 0.967

Phase-based[7] 34.094 36.357 0.961
FlowNet2[18] 34.523 36.178 0.964

SepConv Lf [16] 34.908 36.939 0.968
SepConv L1[16] 34.946 36.987 0.969

FIMSDN(no-flow) 34.981 37.126 0.969
Proposed 35.104 37.215 0.971

TABLE II
PSNR AND SSIM COMPARISONS ON THUMOS-15 TEST DATASET

Methods PSNR/dB SSIMfull mask
Farneback[1] 34.677 37.087 0.971
EpicFlow[10] 34.627 37.192 0.971

Phase-based[7] 33.596 36.354 0.959
FlowNet2[18] 33.974 36.463 0.969

SepConv Lf [16] 35.207 37.409 0.974
SepConv L1[16] 35.419 37.766 0.975

FIMSDN(no-flow) 34.938 37.750 0.969
Proposed 35.089 37.888 0.975

image as ground truth to train. It is worth mentioned that not
all triplets help the model to do frame interpolation, because
they may show no or less difference between consecutive
images. Therefore, we first choose frame triplets consist of
obvious motion by removing the peak signal-to-noise ratio
(PSNR) values less than a certain threshold between pairs
in triplets group. Data augmentation is adopted to increase
the diversity of samples by flipping the images vertically and
horizontally. Our training set finally includes approximately
200,000 triplets. Following [15], parts of the UCF101 [4] and
THUMOS-15 [2] test sets are used as benchmarks.

B. Training Details

To train our neural network, we initialize its parameters via
the approach of Xavier [6], and then use ADAM [21] with
β1 = 0.9, β2 = 0.999, a learning rate of 0.0001 and 8 samples
per mini-batch to minimize the loss function. The training is
performed via TensorFlow [23] on 1 Titan Xp GPU.

C. Results Comparison

To evaluate the performance of our proposed method, we
have compared with several state-of-the-art methods from the
aspects of objective and visual quality. More details about
the comparison experiments and results are explained in the
following parts.

In order to evaluate the benefits of training based on
estimated optical flow, we first feed the input frames di-
rectly into our synthesis network, which is trained as the
same condition as proposed method and denoted as FIMSDN
(no-flow). Several optical flow estimation methods are also
served as the comparison experiments, including traditional
methods Farneback [1] and EpicFlow [10], as well as the
CNNs based approach FlowNet2 [18]. Given the estimated
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Before Image I1 After Image I3 Target Image I2 Masked Image

Fig. 2. Example of masked image for evaluation.

GT GT-crop Phase-based EpicFlow SepConv Lf SepConv L1 Proposed

Fig. 3. Visual comparisons with other frame interpolation methods, where “GT” gives the ground truth of in-between frame with highlighted crop, and
“GT-crop” refers to the cropped regions.

optical flow fields, we adopt the frame interpolation algorithm
introduced in the Middlebury benchmark [3] to synthesize the
in-between frame. We then compare with some directly frame
interpolation methods, including the recent phase-based [7]
technique and a deep learning based method SepConv [16].
For the two trained models proposed in SepConv, we refer to
their as SepConv L1 and Lf based on the different training
loss.

For objective evaluation, the PSNR and structural similarity
(SSIM) are utilized as image quality assessment metrics for in-
terpolation accuracy. And the higher their values are, the better
the frame synthesis quality is. We perform our evaluation not
only on full images, but also on the masked images, as shown
in Fig. 2, which only contain large motion regions in target
images. Specifically, we use EpicFlow [10] to compute flow
fields between pairs of triplets frame, and then choose pixels
where the flow values higher than 0.2 as masked areas. The
performance metrics are denoted as full and masked PSNR,
respectively. The objective quality comparisons on UCF101
and THUMOS-15 test datasets are shown in Tab. I and Tab.
II respectively, where the numbers of rough bodies mean the

best. We can see that the proposed method outperforms other
schemes in terms of both average PSNR and SSIM on UCF101
test frames. Although our method is inferior to SepConv
[16] in terms of full PSNR on THUMOS-15, our average
masked PSNR is better, which indicates the effectiveness
of proposed method on motion estimation. Meanwhile, the
results demonstrate the efficiency of optical flow-guided and
the proposed frame interpolation network by comparing with
methods Flownet2 [18] and FIMSDN(no-flow), respectively.

Examples of visual comparisons are exhibited in Fig. 3,
where some motion parts are spotlighted by red rectangles.
It is worth to mention that optical flow based methods easily
generate blur and artifacts in results owing to the inaccurate
flow estimation and blend algorithm. The proposed method
shows more precise and visual pleasing interpolation results.

IV. CONCLUSIONS

In this paper, we propose an optical flow-guided frame
interpolation method, which explicitly uses optical flow but not
completely depends on it. The pre-trained flow fields provide
a great starting point for latter training, and the following

1064

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



frame synthesis network, namely FIMSDN, blends the warped
frames visually natural. Meanwhile, in the framework of
FIMSDN, a multi-scale model is utilized to make full use
of information from fine to coarse level, which can effectively
improve the results of large motion frame interpolation. And
dense connection is adopted to strengthen feature reuse and
propagation. Experimental results demonstrate that the pro-
posed scheme achieves better performance in both objective
and subjective quality by comparing with other recent optical
flow and CNN based frame interpolation methods.
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