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Abstract – Depth map estimation is important in 2D to 3D 

video conversion. Normally, the background part is static or 

changes slowly, while the foreground part might change 

substantially between consecutive frames. A good strategy is 

that depths for the foreground and the background parts are 

estimated separately and then combined together to form the 

final depth map. In this paper, we propose, for non-key 

frames, an algorithm of automatic foreground depth 

propagation from key frames where the foreground part is 

segmented and depth-assigned manually with some 

supporting computer tools. For each non-key frame, the 

foreground region is segmented independently based on the 

graph-cut and GMM (Gaussian Mixture Model) algorithms. 

The superpixel algorithm is then applied to the foreground 

area only for partitioning it into homogeneous patches. To 

propagate/compensate the foreground depths from key 

frames, superpixel matching (based on color component and 

foreground labels) is performed between each non-key frame 

and its reference frame, with the background parts removed. 

We then refine the foreground depths by using bilateral 

filtering. Experiments show that compared to conventional 

algorithms of block matching, optical flow, and superpixel, 

our method is advantageous of resisting large foreground 

motion and erroneous matching caused by background 

interference (similar colors). In overall, our algorithm 

improves the resulting foreground depth map significantly. 

Index Terms ─ Semi-automatic, Superpixel, 2D-to-3D stereo 
video conversion, sprite, key frame, GMM. 

I. INTRODUCTION 

In view of the vigorous development of 3DTV 

technology since 2010, many researches focus on the 2D-

to-3D video conversion, which is capable of solving the 

problem of the lack of 3D video content in a more efficient 

way. 2D to 3D video conversion relies on accurate depth 

generation/estimation for each frame. It has been known 

that depth quality of “semi-automatic” methods will make 

a good tradeoff between quality and efficiency and seem to 

be prevailing in the future [3,5,12]. For semi-automatic 

processing of a series of image sequence, a small set of 

key-frames is chosen for manual assignment of depths, 

which are then automatically propagated to other non-key 

frames for reducing the overall production cost. Taking a 

set of N frames for example, if frame #1 and #N stand for 

two consecutive key frames (front and rear), the 

intermediate ones (#2 ~ #(N-1)) will be considered as the 

non-key frames. 

Depth propagation can be divided into three 

categories: block-based [1-5], contour-based [6-7], and 

superpixel-based [8-9]. Block-based methods divide a full 

frame into non-overlapping blocks, for each of which a 

motion vector (MV) is estimated and the corresponding 

depth information is compensated from the reference frame. 

Quality of depth propagation is limited by the accuracy of 

MVs. Contour-based methods relies on the tracking of the 

foreground object contours assigned or extracted in the 

preceding key or non-key frame. They often assume 

uniform or constant depths within the foreground object 

area and do not concern about the variation of background 

depth profiles between consecutive frames. On the other 

hand, superpixel-based methods segment frames into 

groups of superpixels and compensate depth information 

from the reference frame by matching superpixels. They 

seem to have better performance than block-matching 

methods. All of the above three kinds of methods suffer 

from error matching caused by foregrounds’ large motion 

and color similarity near the foreground/background 

boundaries, as shown in Fig.1. 

Traditionally, both the foreground and background 

depths for key frames are manually assigned [1-4], which 

are then propagated to non-key frames. However, most of 

the background part changes slowly, while the foreground 

part might change substantially between consecutive 

frames. Recognizing this fact, foreground and background 

depths are treated separately in our prior works [5,12]. We 

adopted a strategy that foreground depths are manually 

assigned for key frames, while background depths are drew 

for a background sprite model (BSM) constructed to 

integrate all the background parts from all frames (key and 

non-key). This has the advantages of reducing human 

efforts in drawing background depths and eliminating 

mutual interferences from each other (background or 

foreground) in depth estimation or propagation. 

In this paper, we continue the same strategy to treat the 

foreground and background depths separately. We will 

focus on the foreground depth estimation/propagation only, 

leaving the background depths set with fixed patterns of 

profile (e.g., constant or top-bottom gradient depths that 

were commonly used) or treated based on the BSM method 

proposed in [5,12]. Compared to [5,12], we adopt a 

modified superpixel matching algorithm for replacement 

of the traditional block matching. The results show that 

much better performance can be achieved. 

II. PROPOSED METHOD 

Our foreground depth propagation algorithm is 

divided into two parts: (1) foreground segmentation for key 

frames, (2) foreground segmentation for non-key frames, 

and (3) foreground depth propagation from key to non-key 
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frames. The detailed flowchart of our algorithm is shown 

in Fig. 2. 

 

 

 

 

(a)              (b)             (c) 
Fig. 1 Erroneous depth propagation caused by large 

motion (a) reference frame, (b) current frame (c) result of 
depth compensation by block matching. 
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Fig. 2 Flowchart of the proposed algorithm 

 

A. Foreground/background segmentation for key 

frames 

The first step is interactively achieved by user with 

the aid of mouse strokes (Fig. 3(a)), followed by graph-cut 

algorithms [5,12] to segment out foregrounds from 

backgrounds. Computer tools (e.g., Photoshop) are then 

used to label each foreground object with a different label 

number (the background is with a label “0”, and foreground 

objects are with label “1”, “2”,… “K”, as shown in Fig. 

3(b)). 

 
(a)                    (b)        

Fig. 3 Foreground/background segmentation for key 

frames (a) mouse strokes of foreground (white) and 

background (black), (b) assigned label map. 

 

B. Foreground/background segmentation for non-key 

frames 

In principle, the graph-cut algorithm can be applied 

similarly to extract the foreground regions for non-key 

frames. However, we suffer from the prohibition of user 

intervention (by aiding strokes) during depth estimation 

process for non-key frames. To cope with this problem, 

“kernel labels” (pixels with confident labels) [12] for both 

the foreground and background regions are detected in 

non-key frames to function similarly to user’s strokes, 

leaving the unconfident pixels with “UND” 

(undetermined) label. The accuracy or correctness of the 

object kernels should be guaranteed so as to make the 

following foreground segmentation successful. 

Traditional motion compensation is adopted as a step 

to identify the kernels: those pixels whose motion 

compensated residues are very small. To be more robust for 

identifying the kernel parts, a bi-directional (forward and 

backward) process from two bounding key frames is 

conducted, whose results are then fused together (only 

those consistent are identified) [12].  

On the other hand, after completing key frames’ label 

maps (Fig. 3(b)), a foreground GMM (Gaussian Mixture 

Model) and a background GMM can be constructed 

separately by using the key frames as the training data [13]. 

Combining the foreground object kernels and the 

foreground/background GMMs, the graph-cut algorithm 

[5] is used to segment the foreground areas for each non-

key frame.  

  

C. Superpixel segmentation and matching 

Motion estimation based on superpixel matching has 

been shown to be superior to that based on block matching 

in certain application fields. It is modified here to meet our 

application in foreground depth propagation. Here we 

adopt the state-of-the-art SLIC superpixel segmentation 

algorithm [10], which clusters the pixels in 5-D feature 

domain (L,*a, *b, x, y, including location and color 

information). Based on the foreground masks after graph-

cut segmentation for non-key frames, we extract the 

foreground areas for superpixel segmentation, as shown in 

Fig. 4. By removing the background part based on the 

resulting masks, it is possible to filter out interferences 

from the similar or dis-occluded background area in the 

process of motion estimation and compensation.   . 

After superpixel segmentation, superpixel matching 

is performed between the reference and the current frames. 

To be robust, the matching cost is defined as below: 

(1) Costs from all superpixels between reference and 

current frames are calculated,  

(2) Based on an extra domain from label, the matching 

cost is defined in a 6-D space (containing L,*a, *b, x, 

y, d, where d is the label number) as: 

 

𝐶𝑜𝑠𝑡(𝑇𝑖 , 𝑅𝑗) = α ∗ 𝑒𝐶𝑑𝑖𝑓𝑓 + 𝛽 ∗ 𝑒𝐸𝑑𝑖𝑓𝑓 + 𝐺𝑚𝑚𝑑𝑖𝑓𝑓 

1 ≤ 𝑖 ≤ 𝑁 ,1 ≤ 𝑗 ≤ 𝑀 
 

𝑤ℎ𝑒𝑟𝑒 𝐶𝑑𝑖𝑓𝑓 = |𝑟𝑇𝑖
− 𝑟𝑅𝑗

| + |𝑔𝑇𝑖
− 𝑔𝑅𝑗

| + |𝑏𝑇𝑖
− 𝑏𝑅𝑗

| 

𝐸𝑑𝑖𝑓𝑓 =  |𝑥𝑇𝑖
− 𝑥𝑅𝑗

| + |𝑦𝑇𝑖
− 𝑦𝑅𝑗

|  

𝐺𝑚𝑚𝑑𝑖𝑓𝑓 = {
0   𝑖𝑓 𝑙𝑇𝑖

= 𝑙𝑅𝑗
 

∞  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    

 
𝐶𝑜𝑠𝑡(𝑇𝑖 , 𝑅𝑗)denotes the matching cost between the 𝑖𝑡ℎ 

superpixel in current frame T and the 𝑗𝑡ℎ  superpixel in 
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reference frame R. N is the number of superpixels in frame 

T and M is the number of superpixels in frame R; (𝑟𝑇𝑖
, 

𝑔𝑇𝑖
, 𝑏𝑇𝑖

)  and (𝑟𝑅𝑗
, 𝑔𝑅𝑗

, 𝑏𝑅𝑗
)  stand for average RGB 

intensities for superpixels 𝑇𝑖  and 𝑅𝑗, respectively. (𝑥𝑇𝑖
, 

𝑦𝑇𝑖
) and (𝑥𝑅𝑗

, 𝑦𝑅𝑗
) are coordinates of the centers of 𝑇𝑖  

and 𝑅𝑗 , respectively. Gmmdiff is used to against 

interference from other areas of different labels (𝑙𝑇𝑖
𝑎𝑛𝑑 𝑙𝑅𝑗

 

represent the labels of the region 𝑇𝑖  and 𝑅𝑗, respectively). 

α and 𝛽 are weights for normalizing importance between 

location, color, and label domains.  

Depth compensation can be conducted after 

superpixel matching. Due to different sizes and shapes 

between the matched 𝑇𝑖  and 𝑅𝑗, the average depth value 

of  superpixel 𝑅𝑗 is used for depth compensation of 

superpixel 𝑇𝑖 . As the label map for foregrounds and 

backgrounds is considered in the matching cost, it will 

prevent the influence of similar-color superpixels from 

other foreground objects.  
 

 
(a)                  (b) 

 
(c) 

Fig. 4 Foreground extraction and superpixel segmentation 

by SLIC algorithm, (a) foreground mask, (b) foreground 

extraction, (c) foreground superpixel segmentation. 
 

D. Bidirectional depth fusion and refinement 

To make the results more robust, bidirectional (forward 

and backward) depth propagations from the front and rear 

key frame, respectively, are conducted, as shown in Fig.5. 

The two resulting foreground depths are then fused via a 

temporal weighting strategy. As shown in the following 

equation, the weight is inversely proportional to the 

temporal distance between the current frame and the front 

and rear key frames. 
 

  𝐷𝑡(𝑙) =
𝑘2−𝑡

𝑘2−𝑘1
𝐷𝑘1(𝑙) +

𝑡−𝑘1

𝑘2−𝑘1
𝐷𝑘2(𝑙) 

 
where k1, k2, and t stand for the indices of the front and 

rear key frame, and the current non-key frame, respectively, 

𝐷𝑡(𝑙) is the foreground depth map of the current non-key 

frame t at location l. As shown in Fig.5, a bilateral filtering 

is applied to refine and obtain the final foreground depth 

map so as to suppress discontinuous depth boundaries 

between superpixels and make human perception comfort. 

III. EXPERIMENTS 

 

Our test sequences include: (1) Undo Dancer (1920× 

1088 pixels, 71 frames), (2) Ballet (1024×768 pixels, 61 

frames), and (3) Mobile (720×540 pixels, 30 frames). 
Among them, “Ballet” and “Mobile” contain static 

backgrounds, but fast foreground motion, while “Undo 

Dancer” contains both foreground and camera motions. 

Experiments are conducted on a platform of Intel(R) 

Core(TM) i7-3770 3.40GHz and 8GB RAM.  

Forward   depth 

Propagation

Bilateral filering

Color and depth images of key frames

Foreground depth map for non-key frames

Backward depth 

Propagation

Depth fusion

 

Fig. 5 Bidirectional foreground depth propagation, fusion, 
and filtering. 

 
Performance is evaluated in terms of foreground 

PSNR. We compare the performances of foreground depth 

propagation between our algorithm and the conventional 

ones based on block matching and optical flow. As shown 

in Fig. 6, conventional block matching method in [5] and 

[3] ((g)&(f)) cannot faithfully compensate depths from the 

reference frame, especially when the motion is large and 

colors around the foreground and background boundaries 

are similar. For optical flow method (Fig. 6(e)), the 

estimation of motion still suffers from the interferences 

from similar background areas. As for our proposed 

modified superpixel method (Fig.6(h)), owing to the spatial 

pre-processing to separate the foreground and background 

based on graph-cut and GMM, better performances can be 

achieved. Our modified algorithm for superpixel matching, 

in contrast to the traditional ones in [8][9], is capable of 

distinguishing multiple foreground objects of similar 

colors. An example in Fig. 7 shows that depth of the left 

hand of the dancer is influenced by the depth of the 

standing male due to the similarity in their skin colors. 

Thanks to our label domain in matching cost so as to 

exclude the interferences from other objects. 

Another example is in Fig. 8, where the test sequence 

is “Undo Dancer”. Due to fast motion of the dancer, the 

traditional method [5] cannot preserve the shape of the 

dancer’s hands in depth map. This will be very harmful in 

3D perception. 

Table Ⅰ shows quantitative comparison for three test 

sequences between [5] and our method. Our proposed 

method only achieves slight improvement for test 

sequences of less or non-deformed foreground objects (like 

“Mobile”). Much better performance can be achieved for 
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test sequences whose foreground objects have large motion 

or deformations (such as “Ballet” and “Undo dancer”).  

 

IV. CONCLUSION 

In this paper, we propose a modified superpixel 

matching algorithm, in combination with the graph-cut 

method for foreground segmentation, to achieve 

foreground depth propagation in semi-automatic 2D to 3D 

video conversion. With spatial segmentation between 

foregrounds and backgrounds, traditional superpixel 

matching can be enhanced to faithfully retrieve better 

depths from the reference frames. Experiments show that 

our result outperforms those traditional ones based on 

block matching and optical flow. 

 

ACKNOWLEDGEMENT 

 

This work was supported by the Center for Innovative 

Research on Aging Society (CIRAS) from The Featured 

Areas Research Center Program within the framework of 

the Higher Education Sprout Project by Ministry of 

Education (MOE) in Taiwan. 
 

 

 
(a)                 (b) 

 
(c)                 (d) 

 
(e)                 (f) 

 
(g)                 (h) 

Fig. 6 Comparison of foreground depth propagation: (a) 
color frame 1, (b) color frame 2, (c) depth ground truth of 
frame 2, (d) foreground mask for frame 2, (e) foreground 
depths by optical flow, (f) by [5], (g) by [3], and (h) by 
proposed method.  

    
(a)              (b)             (c) 

Fig. 7 Comparison of superpixel matching (a) color 

image, (b) without label matching, (c) with label 

matching. 

  
(a)                    (b) 

   
(c)                      (d) 

Fig. 8 Foreground depth propagation result for “Undo 
Dancer”. (a) Color frame 24, (b) foreground mask, (c) 
result by [5], (d) result by our proposed method. 
 
 

Table Ⅰ. Comparison of results between [5] and 

Proposed Method 
Method [5] Proposed Method 

Mobile 26dB 26.9dB 

Ballet 17dB 22.9dB 

Undo dancer 20.9dB 29dB 
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