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Abstract—This paper proposes a novel multi-exposure image
fusion scheme for single-shot high dynamic range imaging with
spatially varying exposures (SVE). Single-shot imaging with SVE
enables us not only to produce images without color saturation
regions from a single-shot image, but also to avoid ghost artifacts
in the producing ones. However, the number of exposures is
generally limited to two, and moreover it is difficult to decide
the optimum exposure values before the photographing. In the
proposed scheme, a scene segmentation method is applied to
input multi-exposure images, and then the luminance of the input
images is adjusted according to both of the number of scenes
and the relationship between exposure values and pixel values.
The proposed method with the luminance adjustment allows us
to improve the above two issues. In this paper, we focus on
dual-ISO imaging as one of single-shot imaging. Experiments
are demonstrated to confirm the effectiveness of the proposed
scheme under both of dual-ISO imaging and single-ISO one.
In an experiment, the effectiveness of the proposed scheme is
demonstrated by comparing the previous dual-ISO imaging and
with single-ISO one.

I. INTRODUCTION

The low dynamic range (LDR) imaging sensors used in
modern digital cameras cannot express the dynamic range of
a real scene, due to a limited dynamic range which imaging
sensors have. The limit results in the low contrast of images
taken by digital cameras.

A method for capturing high dynamic range (HDR) images
is to use a wide dynamic image sensor [1]. However, such
devices are very expensive, so they are not widespread yet.
Therefore, the most common approach for HDR imaging is to
fuse multi-exposure images which are to merge a set of LDR
images taken with different exposure times. This approach
requires to capture multi-exposure images by taking at the
different time, so there are ghost artifact issues, due to the
movement of the camera and the subject. Therefore, various
research works on motion correction and ghost reduction have
been conducted for the multi-exposure image fusions [2]–[5].

A ghost-free tecqunic for HDR imaging is to employ spa-
tially varying exposures (SVE) [6]. In the SVE-based imaging,
a scene is captured with varying exposures for each pixel in
a single image, and multiple sub-images with each exposure
are obtained. The dual-ISO imaging has been proposed as one
of single-shot imaging with SVE, in which the ISO speeds
alternates every two lines in a single raw Bayer image [7]–[9].
In [10]–[12], the exposure time alternates row-wise varying
exposures in a single raw Bayer image with two exposure
times. In Quad Bayer pixel structure [13], integration can be
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Fig. 1. Raw Bayer image sensed with dual-ISO sensor

divided into long-time integration and short-time integration
for every two pixels in the Quad array. However, in these
methods, the number of exposures is generally limited, and
moreover, it is difficult to decide the optimum exposure values
before the photographing.

Because of such a situation, in this paper, we propose
a new image fusion method for single-shot imaging with
SVE. In the proposed method, a new scene segmentation
method is applied to input multi-exposure images, and then
the luminance of the input images is automatically adjusted
by analysing segmented images [14], [15]. This paper focuses
on dual-ISO imaging as one of single-shot imaging with SVE
to conform the effectiveness of the proposed fusion method.
Some experiments demonstrate that the proposed method
outperforms conventional methods in terms of two objective
quality metrics, HIGRADE [16] and discrete entropy [17].

II. PREPARATION

In this paper, we focus on dual-ISO imaging as one of
single-shot imaging. Here we summarize dual-ISO imaging
and conventional fusion schemes for the imaging.

A. Dual-ISO imaging

A raw Bayer image sensed with a dual-ISO sensor is
illustrated in Fig.1, where the ISO speed alternates every two
lines in the Bayer image [7]. By using the dual-ISO sensor, raw
images with two exposures are produced. The Bayer image
captured with two ISO speeds are fused as shown in Fig.2.

1) Separation and interpolation: A raw image X with the
size of M ×N is first divided into two raw images with the
size of M/2 × N , according to the difference of ISO speed.
Next, interpolation processing is applied to each raw image
for producing two raw images with the size of M ×N : Xlow

and Xhigh as in Fig.2. In [7], AMaZE [18] was used as the
interpolation method.
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Fig. 2. Conventional method for dual-ISO imaging

2) Exposure compensation: The relationship between a
pixel value x(i, j) and the exposure value e(i, j) at the pixel
(i, j) is given by

e(i, j) = log2(max(x(i, j), 1)). (1)

Before carrying out image fusion, in the previous work [7],
the exposure value of Xhigh is adjusted as

êhigh(i, j) = ehigh(i, j)− log2

(
isohigh
isolow

)
, (2)

where isohigh and isolow are high ISO speed and low ISO
speed respectively, and ehigh(i, j) is the exposure value of
Xhigh at the pixel (i, j).

3) Image fusion: Xlow has generally detailed information
in bright areas. On the other hand, Xhigh has detailed informa-
tion in dark areas. Considering these properties, an equation
for image fusion was proposed to fuse two exposure values,
elow and êhigh as

emix(i, j) = êhigh(i, j) ·K + elow(i, j) · (1−K), (3)

where K, 0 ≤ K ≤ 1 is a mix factor and elow(i, j) is the
exposure value of Xlow. From eq.(1), the adjusted pixel value
x̂(i, j) can be calculated from the exposure value emix(i, j)
by

x̂(i, j) = 2emix(i,j). (4)

4) Demosaicing: To obtain a RGB image, an image demo-
saicing algorithm is finally applied to the fused raw image.

In the conventional signle-shot imaging, the number of
exposures is generally limited to two, and moreover it is
difficult to decide the optimum exposure values before the
photographing as described above.

III. PROPOSED METHOD

In order to improve the two issues that the conventional
signle-shot imaging has, we propose a new image fusion
method for the imaging. The outline of the proposed method is
shown in Fig.3, where the main contribution of this work is in
scene-segmentation based exposure competition. The exposure
competition consists of the following five steps (See Fig.4).

A. Local contrast enhancement

Since the number of exposures is generally limited to
two, X can not always represent the scene clearly. A local
contrast enhancement algorithm is used to enhance detailed
information in X. Therefore, in this paper, the local contrast

enhancement using the dodging and burning algorithm [19] is
performed as

L′
k(i, j) =

L2
k(i, j)

Lak(i, j)
, k ∈ {low, high}, (5)

where Lk(i, j) is the luminance value of Xk at the place
(i, j), and Lak(i, j) is the local average of luminance Lk(i, j)
around pixel (i, j). Here, a bilateral filter is performed to
obtain Lak(i, j) as in [19].

The luminance Lk = {Lk(i, j)} is required to calculate
eq.(5), but Xk(i, j) has only a R, G or B value. In this paper,
in order to obtain luminance Lk from Xk, Xk is divided into
non-overlapping blocks with 2 × 2 pixels as shown in Fig.5.
Since Xk(i, j) is a R value when both i and j are odd, the
luminance Lk(i, j) is calculated in each block according to
ITU-R BT.601 [20], as

Lk(i, j) = 0.257Xk(i, j)

+ 0.504

(
Xk(i+ 1, j) +Xk(i, j + 1)

2

)
+ 0.098Xk(i+ 1, j + 1) + 16,

(6)

Lk(i, j) = Lk(i+ 1, j) = Lk(i, j + 1) = Lk(i+ 1, j + 1).
(7)

B. Scene segmentation

Using L′
high = {L′

high(i, j)} and L′
low = {L′

low(i, j)}, the
set R of all pixels is divided into S subsets {R1, R2, . . . , RS},
where each area Rs, s ∈ {1, 2, . . . , S} has specific brightness
and R1∪R2∪· · ·∪RS = R. For this segmentation, a Gaussian
mixture distribution is utilized to model the luminance distri-
bution of the input images in this paper. Pixels are classified
by a clustering algorithm based on a Gaussian mixture model
(GMM).

To obtain a model considering the luminance values L′
high

and L′
low, we regard luminance values at a pixel (i, j) as a 2-

dimensional vector l(i, j) = {L′
low(i, j), L

′
high(i, j)}T, where

T denotes the transpose of a vector. Then the distribution of
the vector l(i, j) is modeled by a GMM with D areas as

p (l(i, j)) =
D∑

d=1

πdG (l(i, j)|µd,Σd) , (8)

where πd is a mixing coefficient and G (l(i, j)|µd,Σd) is a 2-
dimensional Gaussian distribution with mean µd and variance
covariance matrix Σd.
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To fit the GMM into given l(i, j), a variational Bayesian
algorithm [21] is utilized. Compared to the traditional maxi-
mum likelihood approach, the variational Bayesian algorithm
allows us to avoid overfitting even when we choose a large D.
Therfore, unnecessary mixture components are automatically
removed by using the approach together with a large D.
D = 10 is used in this paper, as the maximum of the partition
number S.

A cluster for an observation l(i, j) is determined by the
responsibility γ (zd|l(i, j)) which is given as the following
conditional probability:

γ (zd|l(i, j)) = p(zd = 1|l(i, j)) = πdG(l(i, j)|µd,Σd)∑D
j=1 πjG(l(i, j)|µj ,Σj)

,

(9)
where zd is a particular element equal to 1 and all other
elements are equal to 0. When an pixel (i, j) ∈ R is given
and s satisfies the following equation

s = argmax
d

γ(zd|l(i, j)), (10)

the pixel (i, j) is assigined to a subset Rs of R.
By using the above approach, the number of segmented

areas, S ≤ D is generally larger than two, that is the number
of exposure values used in the conventional single-shot image.

C. Exposure compensation

The scaled luminance L̂s which clearly represents an area
Rs is obtained by

L̂s(i, j) = αsL
′
k(i, j), (11)

where parameter αs > 0 indicates the degree of adjustment.
The approximate brightness of an area Rs is calculated

as the geometric mean of luminance values on Rs. We thus
estimate an adjusted multi-exposure image L̂s(i, j), so that the
geometric mean of its luminance equals to middle-gray of the
displayed image, or 0.18 on a scale from zero to one, as in
[22]. The geometric mean g(L′

k|Rs) of luminance L′
k on pixel

set Rs is calculated using

g(L′
k|Rs) = exp

 1

|Rs|
∑

(i,j)∈Rs

ln(max(L′
k(i, j), ϵ))

 ,

(12)
where ϵ is set to a small value to avoid singularities at
L′
k(i, j) = 0. By using eq.(12), parameter αs is calculated

as
αs =

0.18

g(L′
k|Rs)

. (13)

Since a smaller value for parameter αs is better, k is chosen
as

k = argmin
h∈{low, high}

(0.18− g(L′
h|Rs))

2. (14)

By using the exposure compensation, exposure values are auto-
matically adjusted, even when the values have no approximate
brightness.

D. Tone Mapping

Because the scaled luminance value often exceeds the
maximum value of the common image format, pixel values
might be lost due to truncation of the values. This problem
is overcome by using a tone mapping operation to fit the
adjusted luminance value into the interval [0, 1]. In this paper,
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Reinhard’s global operator [22] is used as a tone mapping
operator.

E. Combining adjusted luminance and input images

A set {L̂s} of luminance adjusted by the scene
segmentation-based exposure compensation is combined with
an input image {Xk} to obtain adjusted images {X̂s}. To
associate each L̂s = {L̂s(i, j)} with an input image Xk =
{Xk(i, j)}, eq.(14) is utilized. As a result, combining L̂s, the
selected input image Xhigh or Xlow and its luminance Lhigh

or Llow, adjusted multi-exposure images {X̂s} are obtained.
Therefore, the adjusted pixel value X̂s(i, j) is computed by

X̂s(i, j) =
L̂s(i, j)

Lk(i, j)
Xk(i, j), k ∈ {low, high}. (15)

Similarly, from eq.(7), other three pixels in the block are
computed with L̂s(i, j), as

X̂s(i+ 1, j) =
L̂s(i, j)

Lk(i, j)
Xk(i+ 1, j),

X̂s(i, j + 1) =
L̂s(i, j)

Lk(i, j)
Xk(i, j + 1),

X̂s(i+ 1, j + 1) =
L̂s(i, j)

Lk(i, j)
Xk(i+ 1, j + 1).

(16)

F. Demosaicing

Since {X̂s} are Raw images, a demosaicing algorithm is
carried out to obtain the RGB images {Ys}. In this paper, we
apply a simple image demosaicing algorithm [23] to {X̂s}.

G. Image fusion

A final image Yout is produced as

Yout = F(Y1,Y2, . . . ,YS), (17)

where F(·) indicates a function to fuse S images
Y1,Y2, . . . ,YS into a single image. Any existing multi-
exposure image fusion methods are applicable for the proposed
scheme. The fusion method proposed by Mertens et al. [24]
is used in this paper as F(·).

IV. SIMULATION

Some simulations were carried out to demonstrate the
effectiveness of the proposed scheme for single-shot HDR
imaging.

A. Simulation conditions

Photographs taken by Canon EOS 5D Mark II camera were
directly used as input image X. We also used Magic Lantern
[25], which is a firmware to perform dual-ISO sensing. The
shutter speed and the aperture were set by auto exposure of
the camera at ISO 100. This condition means that the exposure
value is 0 EV at ISO 100. For the dual-ISO imaging, ISO 100
and ISO 1600 correspond to 0 EV and +4 EV respectively.
Gamma compensation with γ = 2.2 was also applied to all
images.

B. Comparison with conventional methods

The performance of the proposed scheme was compared
with the conventional dual-ISO imaging [7] and single-ISO
one. The quality of images produced by each method was
evaluated according to HIGRADE [16] and discrete entropy
[17] which are objective quality assessments without any refer-
ence images. HIGRADE represents the quality of SDR images
obtained by tone mapping, multi-exposure fusion methods.
Discrete entropy represents the amount of information in an
image. For each score, a larger value means higher quality.

C. Simulation results

Figure 6 shows examples of output images produced by
each method. Figures 6(b) and 6(c) do not clearly represent
dark areas, while Fig. 6(d) does not clearly represent bright
areas. From these results, the conventional dual-ISO imaging
in Fig.6(b) does not successfully capture high-quality images,
although two exposure values are utilized. Compared with the
conventional one, the proposed imaging successfully captures
images as shown in Fig.6(a), where the number of segmented
areas in Fig.6(a) was S = 5 as shown in Fig.6(e). The objective
quality assessments, HIGRADE and discrete entropy, also
show that the proposed imaging outperforms other methods.

Figures 7 summarizes the average score and variance range
of the objective assessments for eight input images, where
the middle line indicates the average scores of eight images
under the use of each method, and the upper and lower line
denote the variance range. From Fig. 7, the proposed imaging
provides higher quality images than the conventional imaging.

V. CONCLUSION

This paper proposes a novel multi-exposure image fusion
scheme for single-shot high dynamic range imaging with
spatially varying exposures. The main contribution of this
work is in scene-segmentation based exposure competition.
In this paper, we have focused on dual-ISO imaging as one
of single-shot imaging with SVE. Experimental results have
shown that the proposed scheme outperforms the conventional
algorithm with two ISO speeds and the direct capture with
single ISO speed in terms of two no reference objective
metrics, HIGRADE and discrete entropy.

In the future, the proposed method will be applied to other
single-shot imaging methods with SVE such as Quad Bayer
pixel structure.
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