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Abstract—Semi-supervised binary classifier learning is a fun-
damental machine learning task where only partial binary
labels are observed, and labels of the remaining data need to
be interpolated. Leveraging on the advances of graph signal
processing (GSP), recently binary classifier learning is posed as a
signal restoration problem regularized using a graph smoothness
prior, where the undirected graph consists of a set of vertices and
a set of weighted edges connecting vertices with similar features.
In this paper, we improve the performance of such a graph-based
classifier by simultaneously optimizing the feature weights used
in the construction of the similarity graph. Specifically, we start
by interpolating missing labels by first formulating a boolean
quadratic program with a graph signal smoothness objective,
then relax it to a convex semi-definite program, solvable in
polynomial time. Next, we optimize the feature weights used for
construction of the similarity graph by reusing the smoothness
objective but with a convex set constraint for the weight vector.
The reposed convex but non-differentiable problem is solved via
an iterative proximal gradient descent algorithm. The two steps
are solved alternately until convergence. Experimental results
show that our alternating classifier / graph learning algorithm
outperforms existing graph-based methods and support vector
machines with various kernels1.

I. INTRODUCTION

In semi-supervised binary classifier learning [1], missing
labels of a dataset need to be interpolated given a small subset
of observed binary labels. In practical scenarios, labeling is
often an expensive and/or tedious task, whereas unlabelled
data can often be easily and cheaply obtained, e.g., social
media. Thus, semi-supervised classifier learning is of practical
importance as data volume grows.

Leveraging on the advance of graph signal processing (GSP)
[2]–[5], recent works [6], [7] pose binary classifier learning as
a signal restoration problem on graphs, where the undirected
graph consists of a set of nodes (each associated with a feature
vector) and a set of weighted graph edges connecting similar
nodes in the high-dimensional feature space. A graph smooth-
ness prior is typically adopted to regularize the ill-posed signal
restoration problem [8]–[12]. While the above formulation
results in the smoothest binary classifier signal with respect

1The work is partly funded by the European Unions Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agree-
ment No 734331.

to the graph while being consistent to the observed partial
labels, a strong assumption is implicitly made that the under-
lying graph is sufficiently informative in reflecting inter-node
similarities based on feature distance for binary classification.
Thus, one can potentially improve classifier performance if the
graph construction and the classifier graph-signal restoration
are optimized jointly, leading to an even smaller objective
function value. This is the main idea of our paper.

Our alternating binary classifier and graph learning method
consists of two iterative steps. We first formulate a boolean
quadratic program (BQP) to predict missing labels where the
binary classifier is assumed smooth with respect to a fixed sim-
ilarity graph computed based on inter-node weighted feature
distances. We then relax the NP-hard problem to a convex
semi-definite program (SDP) [13], so that the optimization
can be efficiently solved [14]. Next, keeping the classifier
signal fixed, we optimize the set of feature weights using
the same signal smoothness objective, subject to a convex set
constraint for the weights. We reformulate the problem into
an unconstrained one and solve it using a proximal gradient
(PG) method [15]. The two steps are executed iteratively until
convergence. Experimental results show that our alternating
binary classifier and graph learning method outperforms exist-
ing graph-based methods and support vector machines (SVM)
with various kernels.

The remainder of the paper is organized as follows. We
review related graph learning work in Section II. We discuss
our proposed method in Section III. We evaluate the proposed
method on several datasets and compare it with existing graph-
based methods and SVMs with various kernels in Section IV.
Finally, we conclude in Section V.

II. RELATED WORKS

The idea of alternately restoring the binary classifier signal
and learning the feature weights in the similarity graph was
first studied in [6]. Specifically, [6] formulated the feature
graph update problem as a quadratic program and solved it via
Lagrangian relaxation, and the feature weights were learned
using a Newton’s descent method. However, the selection of
the Lagrange multiplier grossly affects the performance and is
difficult to set. In addition, Newton’s descent method requires
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inverse Hessian computation of the feature weights in every
iteration, and redundant features need to be removed if the
Hessian matrix is singular. Unlike [6], our PG-based scheme
avoids second-order Hessian computation, and thus is much
more computationally practical.

The idea of updating the feature weights in the feature
graph is similar to metric learning [16], including more recent
approaches with geometric mean [17] and Bayesian inference
[18], that aims to learn a Mahalanobis matrix which yields
small distances for relatively similar nodes and large distances
for relatively dissimilar nodes. In contrast, our PG-based
feature weight update scheme not only promotes distance
similarity and dissimilarity among observed graph nodes, but
also preserves the smoothness of the classifier signal with
respect to the graph.

III. ALTERNATING BINARY CLASSIFIER AND GRAPH
LEARNING

Given noise-free partial binary labels, we aim to alternately:
1) interpolate the remaining labels via SDP given a fixed
similarity graph; and 2) compute the “best” feature weights in
the similarity graph given a restored binary classifier signal.
We alternately solve the two steps until convergence. We
discuss the two steps in order next.

A. Binary Classifier Learning via SDP

We first construct an undirected graph G = {V, E ,A} with
positive edge weights, where G consists of a set of N vertices
V , a set of edges E connecting V , and a set of edge weights
in a weighted adjacency matrix A. An edge weight wi,j in
A between nodes i and j is computed as the Gaussian of the
negative weighted feature distance square:

wi,j = exp

{
−

K∑
k=1

ck (fk(i)− fk(j))
2

}
, (1)

where ck is the weight for the k-th feature, and fk(i) is the
k-th feature value for node i.

We define a degree matrix D whose i-th diagonal entry is
Di,i = ΣN

j=1wi,j . Subsequently, we define a combinatorial
graph Laplacian matrix [2]–[5] L := D −A. Given a label
vector x with partial labels, we now formulate a two-way
partition problem as follows [14]:

min
x

x>Lx

s.t. x2i = 1, i ∈ {1, . . . , N}
xi = x̂i, i ∈ F , F ⊂ {1, . . . , N} , (2)

where x̂i in subset F are the observed noise-free binary labels.
Minimizing the objective x>Lx means that signal x should
be smooth with respect to the graph G, as done in previous
graph signal restoration works [8]–[12]. The problem (2) is
also known as a boolean quadratic program (BQP) [13], which
is NP-hard due to the constraint x2i = 1, i.e., xi ∈ {−1, 1}.

Since x>Lx = tr(x>Lx) = tr(Lxx>), we define X =
xx>, where X is a rank-one symmetric positive semi-definite
(PSD) matrix. We now define a symmetric matrix M =

[X x;x> 1]. From classical linear algebra, we know that M is
PSD if: i) sub-matrix X is PSD, and ii) the Schur complement
M/X of sub-matrix X of matrix M is PSD. X is indeed PSD
if X = xx>. Schur complement M/X = X − xx> = 0 if
X = xx>, and hence requiring X and Schur complement
M/X to be PSD is a necessary but not sufficient condition
for X = xx>. Thus the problem (2) can be written into a
relaxed version as follows:

min
X

tr(LX)

s.t. Xii = 1, i ∈ {1, . . . , N}[
X x
x> 1

]
� 0, xi = x̂i, i ∈ F

rank(X) = 1, (3)

where tr(·) is the trace operator. The rank constraint
rank(X) = 1 still causes (3) to be non-convex. If we relax this
constraint, then (3) without rank(X) = 1 becomes a convex
SDP problem, solvable in polynomial time [14]. We take sign
operation given computed x∗ to acquire the final predicted
labels, i.e., x̃ = sign(x∗).

B. Feature Graph Learning via PG

Given the label signal x̃ computed in Section III-A, if we
now consider the graph Laplacian L as a function of feature
weights ck’s, we can compute the optimal ck’s using the same
graph Laplacian regularizer [2]:

min
c

x̃>L(c)x̃ = min
c

∑
i,j

wi,j (x̃i − x̃j)2

s.t.
{
ck ∈ [0, C],∀k
1>c ≤ C

(4)

where constraint 1>c ≤ C is necessary to prevent the trivial
solution when ck = ∞. For notation simplicity, denote by
Fk(i, j) = (fk(i) − fk(j))2, and di,j = (x̃i − x̃j)2. We next
define a convex set S = {c | ck ∈ [0, C],∀k,1>c ≤ C}. One
can verify S is a convex set since ∀v1,v2 ∈ S , their convex
combination γv1 + (1− γ)v2 ∈ S,∀γ ∈ [0, 1]. Note that S is
the intersection of half-space U = {c : 1>c ≤ C} and a box
T = Box[0,C] [19], where C is a K-dimension vector with
entries all equal to C. We then define an indicator function
IS(c) as follows:

IS(c) =

{
0 if c ∈ S
∞ o.w. (5)

With (5), (4) can be re-written as an unconstrained problem:

min
c

∑
i,j

exp

{
−

K∑
k=1

ckFk(i, j)

}
di,j︸ ︷︷ ︸

g(c)

+IS(c) (6)

where the first term g(c) : RK → R is convex with respect
to c (we prove the convexity of g(c) in Appendix A) and dif-
ferentiable, while the second term IS(c) : RK → R∪{+∞}
is convex but non-differentiable. We thus employ proximal
gradient descent [15] to solve (6).
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In particular, we first compute the gradient of g(c):

∇g(c) =



−
∑
i,j

exp

{
−

K∑
k=1

ckFk(i, j)

}
F1(i, j)di,j

...

−
∑
i,j

exp

{
−

K∑
k=1

ckFk(i, j)

}
FK(i, j)di,j


(7)

The proximal mapping proxIS (u) for the indicator function
IS(c) is an Euclidean projection onto the convex set S, i.e.,

proxIS (u) = arg min
c∈S

1

2
||u− c||22

= PS(u) =

{
PT (u), if 1>PT (u) ≤ C
PT (u− α · 1), o.w.

(8)

where PT (u) = (min{max{uk, 0}, C})Kk=1, and α is any
positive root of 1>PT (u− α · 1) = C [19].

See Fig. 1 for examples of the above projection of a given
point onto the intersection S of U and T when K = 2.

u1

u2

Box [0 ,C]

{c :1T c≤C }
∩Box [0 ,C]

{c :1T c≤C }

(u1,u2)

(u1−α , u2−α)

Fig. 1. Illustration of proxIS (u) using (8) when K = 2, where the
given points that suffice 1>PT (u) ≤ C are marked in black, and the ones
that suffice 1>PT (u) > C are marked as green and magenta circles. For
the given point, (u1, u2), marked as a magenta circle, the resulting point
(u1 − α, u2 − α), marked as blue and black circles, may lie anywhere on
the magenta line. The projected points or points in S that are closest to the
given points are marked in red.

The PG algorithm can thus be written as:

cl+1 := PS(cl − t∇g(cl)). (9)

One can use a fixed step size tl = t ∈ (0, 2/L] to solve
(6) with a convergence rate O(1/l), where L is a Lipschitz
constant that requires computation of the Hessian of g(c) [15],
[20], [21]. In practice, to avoid a large computation cost,
we select a step size small enough to satisfy the Lipschitz
smoothness of the objective function.

IV. EXPERIMENTATION

We evaluate our proposed scheme on a small Human Quiet
Stance (HQS) dataset [22] with 5 classes, 50 features and 270
samples, where the features are extracted from the time series
trajectories of twelve body parts. We also use the following
small datasets in KEEL repository [23]: appendicitis (2
classes, 7 features, 106 samples), wine (3 classes, 13 features,

178 samples), tae (3 classes, 5 features, 151 samples),
led7digit (10 classes, 7 features, 500 samples).

We solve the semi-definite relaxed version of (3) for bi-
nary classifier learning using CVX, a package for specifying
and solving convex programs [24], [25], and heuristically
set C = 1000 for the convex set S in (8) for feature
graph learning. All experiments were performed in Matlab
R2017a on an i5-7500, 8GB of RAM, Windows 10 PC.
We compare our proposed method with SVMs with five
different kernels: linear, quadratic, polynomial, Gaussian radial
basis function (RBF) and multilayer perceptron (MLP). For
optimal performance, we set polynomial kernel order 3, RBF
kernel scaling factor 10, and two MLP kernel parameters
p1 = 0.001, p2 = −0.001 in tanh(p1w · z + p2). We also
evaluate the following graph-based methods: 1) SDP-based
classifier signal restoration without PG-based feature weight
update, and 2) a quadratic-based classifier signal restoration
formulation minx x

>Lx s.t. xi = x̂i, i ∈ F . We adopt one
against one multi-class classification strategy [26] on datasets
with more than two classes for all evaluated methods. Note that
neural-network-based methods, e.g., [27], are not evaluated
since they generally require large training dataset.

Tables I-V present the classification error rates based on
inverse q-fold cross-validation (CV) and q-fold CV, which
show that our SDP binary classifier scheme outperforms all
competing methods except for HQS dataset, where potential
noise in the time series body part trajectories results in noisy
extracted features and limits the classification performance of
all evaluated methods. In practice, one can use our SDP bi-
nary classifier scheme (Graph-SDP) for efficient computation
compared to the quadratic formulation (Graph-quadratic) given
the fact that the former approximates the latter, as can be seen
from Tables I, III, IV and V.

TABLE I
CLASSIFICATION ERROR RATES ON HQS.

inverse q-fold CV q = 9 q = 8 q = 7 q = 6
SVM-linear 1.80% 1.31% 1.12% 1.18%

SVM-quadratic 3.43% 3.04% 2.76% 2.44%
SVM-polynomial 3.01% 2.65% 2.53% 2.27%

SVM-RBF 1.22% 1.28% 0.96% 1.12%
SVM-MLP 1.78% 1.55% 1.36% 1.35%

Graph-quadratic 3.53% 3.32% 3.42% 3.41%
Graph-SDP 3.53% 3.37% 3.64% 3.50%
Proposed 1.41% 1.15% 1.27% 0.94%

TABLE II
CLASSIFICATION ERROR RATES ON APPENDICITIS .

inverse q-fold CV q = 9 q = 7 q = 5 q = 3
SVM-linear 22.81% 21.31% 21.19% 21.86%

SVM-quadratic 25.85% 25.76% 25.20% 20.83%
SVM-polynomial 22.96% 23.69% 25.41% 27.00%

SVM-RBF 23.50% 24.28% 21.76% 16.27%
SVM-MLP 25.13% 27.27% 25.49% 24.29%

Graph-quadratic 19.81% 19.81% 19.81% 19.81%
Graph-SDP 19.81% 19.81% 19.81% 19.81%
Proposed 17.09% 15.70% 14.78% 14.90%

V. CONCLUSION

Leveraging on the advance of the graph signal processing,
the semi-supervised binary classifier learning problem can be
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TABLE III
CLASSIFICATION ERROR RATES ON WINE .

inverse q-fold CV q = 9 q = 8 q = 7 q = 6
SVM-linear 4.71% 4.32% 4.51% 3.42%

SVM-quadratic 15.12% 13.87% 12.06% 10.45%
SVM-polynomial 16.43% 16.21% 13.78% 12.69%

SVM-RBF 3.87% 3.37% 3.38% 3.00%
SVM-MLP 4.18% 3.58% 3.72% 3.51%

Graph-quadratic 33.12% 33.38% 31.87% 29.20%
Graph-SDP 43.62% 39.46% 42.52% 37.52%
Proposed 2.96% 2.94% 2.22% 2.25%

TABLE IV
CLASSIFICATION ERROR RATES ON TAE .

inverse q-fold CV q-fold CV
q = 5 q = 3 q = 3 q = 8

SVM-linear 41.98% 40.59% 41.34% 47.02%
SVM-quadratic 42.51% 40.59% 41.34% 44.37%

SVM-polynomial 43.45% 41.42% 45.14% 48.01%
SVM-RBF 44.80% 45.50% 43.87% 42.19%
SVM-MLP 44.94% 45.70% 44.15% 41.66%

Graph-quadratic 56.39% 52.37% 44.98% 42.45%
Graph-SDP 62.57% 60.24% 65.40% 55.43%
Proposed 41.80% 39.82% 34.71% 31.85%

posed as a graph-based signal restoration problem regularized
by a widely-used graph smoothness prior. In this paper,
we proposed a novel graph-based semi-supervised learning
method for classification that alternatively restores the binary
classifier signal and learn the feature weights in the similarity
graph. We do this by first predicting the remaining labels
given an initial graph via a convex SDP formulation that is a
relaxation of the NP-hard BQP, and then compute the optimal
feature weights in the similarity graph given the restored
binary classifier signal via an unconstained formulation solved
using PG. Experimental results confirm that our alternating bi-
nary classifier and graph learning method outperforms existing
graph-based methods and SVM’s with various kernels.

APPENDIX A
CONVEXITY OF g(c)

Proof: If we denote hi,j(c) = −
∑K

k=1 ckFk(i, j), then
g(c) =

∑
i,j wi,j(hi,j(c))di,j =

∑
i,j exp {hi,j(c)} di,j .

Since hi,j(βa + (1 − β)b) = βhi,j(a) + (1 − β)hi,j(b),
∀a,b ∈ S,∀β ∈ [0, 1], hi,j(c) is both convex and concave.

Since the function exp {hi,j(c)} is a composition of 1)
hi,j(c) : RK → R and 2) wi,j(hi,j(c)) : R → R, where
wi,j(hi,j(c)) is twice differentiable and w

′′

i,j(hi,j(c)) ≥ 0,
besides, such operation, namely ‘composition with scalar func-
tions’, preserves convexity [14], thus wi,j(hi,j(c)) is convex.

Next, since wi,j(hi,j(c))’s are convex functions and di,j’s
are nonnegative scalars, and g(c) is a nonnegative weighted
sum, where the operation ‘nonnegative weighted sums’ pre-
serves convexity [14], thus g(c) is convex.

REFERENCES

[1] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning.
The MIT Press, 2006.

[2] D. I. Shuman et al., “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE SPM, vol. 30, no. 3, pp. 83–98, May 2013.

[3] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image
processing,” Proc. IEEE, vol. 106, no. 5, pp. 907–930, May 2018.

TABLE V
CLASSIFICATION ERROR RATES ON LED7DIGIT .

inverse q-fold CV q = 35 q = 25 q = 15 q = 9 q = 7
SVM-linear 0.49% 0.16% 0.15% 0.19% 0.18%

SVM-quadratic 1.28% 1.52% 0.90% 1.09% 1.69%
SVM-polynomial 1.24% 1.64% 0.68% 0.57% 0.53%

SVM-RBF 0.55% 0.21% 0.17% 0.19% 0.21%
SVM-MLP 0.68% 0.20% 0.16% 0.19% 0.19%

Graph-quadratic 12.20% 7.42% 2.48% 0.31% 0.21%
Graph-SDP 16.04% 12.24% 6.23% 0.81% 0.36%
Proposed 9.05% 3.18% 0.12% 0.00% 0.00%

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
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