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Abstract—In this paper, we propose a refining method of
graphs having clusters. Clean graphs, i.e., those represent re-
lationships between data clearly, are important for various
applications. There have been many graph construction or learn-
ing methods, however, graphs obtained from the conventional
approaches are not specifically designed to yield clean graphs
that have dense connections within clusters whereas sparse ones
between them. In this paper, we focus on making dense edges
denser and sparse edges sparser for refining graphs. In order to
make it possible, we propose a low-rank sparse decomposition of
an adjacency matrix. We apply the methodology of robust PCA
to the adjacency matrix for the decomposition. To obtain a valid
adjacency matrix, we further formulate it in a form applicable
to ADMM with proper constraints. In the experiments using
synthetic data, we validate that the proposed method effectively
refines graphs.

I. INTRODUCTION

Representing data via graphs has been very useful in various
areas such as machine learning [1]–[4], computer vision [5]
and signal processing [6]–[8]. A graph consists of vertices and
(weighted) edges. Graphs are often constructed from observed
data by connecting a vertex (representing one data point) to the
other ones by using simple methods [4], e.g., fully connected,
k-nearest neighbor, and ε-neighbor methods.

These simple methods are easy to use, but they would
deteriorate the performance of some applications, such as
spectral clustering [4], by using graphs. For an appropriate
clustering, vertices within a cluster should be connected denser
than those in other clusters, however, graphs constructed by
the simple methods only represent the connections between
vertices. They cannot often reflect the intra- and inter-cluster
connections.

Graph learning methods have recently been proposed to
construct a good graph from a set of observations [9]–[13].
They construct a graph by assuming the data prior. Typically,
a graph is obtained by solving an optimization problem with
a data smoothness term that calculates the smoothness of the
signal according to the underlying graph [14]. One also uses
the assumption regarding the low-rankness of a matrix form
of observations [13]. In this method, a graph is reproduced
from the data after a low-rank approximation.

Though these existing methods assume the characteristics
of data themselves, the assumptions for the graph itself are
not sufficiently utilized. As a result, the conventional methods

do not explicitly learn clean graphs that represent strong
relationships within clusters and weak relationships among
them. In addition, the obtained matrices by these methods
do not always represent valid variation operators like having
negative edge weights.

In this paper, we propose a refining method of graph
adjacency matrices that represent graphs with clusters. Refined
clean graphs are assumed to have dense connections within
clusters whereas sparse ones between them. To construct a
clean graph, the adjacency matrix of the graph is decomposed
into low-rank and sparse matrices by solving a convex op-
timization problem [15]–[18] with additional constraints. The
derived low-rank matrix is considered as an optimal adjacency
matrix representing a clean graph. As we state later, the low-
rankness of the adjacency matrix is expected to make the edges
between different clusters sparse and ones within each cluster
dense. The optimization method is efficiently solved by using
the alternating direction method of multipliers (ADMM) [18]
in our method.

Our approach uses the assumptions described as follows.
When the ideal data are divided into multiple clusters, the
graph made from the data should be a clean graph where
each cluster forms complete graphs (or dense graphs close
to a complete graph) and the graph has few edges connecting
other clusters. Therefore, the clean adjacency matrix can be
assumed as a low-rank matrix. This is because the rank of the
adjacency matrix is ideally equal to the number of clusters if
each cluster forms complete graphs and does not have edges
between clusters.

In reality, graphs made from observed data have many noisy
edges between clusters. However, compared to the edges in
a cluster, the noisy edges are relatively sparse. Therefore,
the adjacency matrix representing the noisy edges can be
assumed as a sparse matrix. As a result, an adjacency matrix
representing clusters could be assumed to be a sum of low-
rank and sparse matrices.

The remaining part of this paper is organized as follows.
In Section II, the proposed method using the low-rank sparse
decomposition is described. Experimental results for synthetic
data are shown to validate our proposed method in Section III.
Finally, Section IV concludes the paper.

Notation: Notation used in this paper is summarized in
Table I. Specifically, T transposes the matrix of a vector form
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TABLE I
LIST OF NOTATION

Symbol Description
N The number of samples of vertices
K The number of clusters
A ∈ RN×N Adjacency matrix
W ∈ RN×N Adjacency matrix of a noisy graph
Wl ∈ RN×N Low-rank component of an adjacency matrix
Ws ∈ RN×N Sparse component of an adjacency matrix
T ∈ RN2×N2

Transposing matrix for a vector form matrix
I ∈ RN2×N2

Identity matrix
vec(·) Matrix represented by vector form
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Fig. 1. Relationship between the number of inter-cluster edges and the rank
of adjacency matrices

as Tvec(W) = vec(WT ) for a square matrix W. It satisfies
TTT = I and is a symmetric matrix. vec(·) represents a vector
form in which columns of a matrix are vertically connected.

II. PROPOSED METHOD

A. Motivation: Low-Rank Adjacency Matrix

In order to obtain a clean graph whose dense and sparse
parts are clearly separated, it is necessary to reduce the number
of edges and/or edge weights connecting different clusters. It
is also necessary to make edges within each cluster denser.
Such adjacency matrices of the graph are often low-rank.

For example, Fig. 1 shows two graphs along with ranks of
their adjacency matrices. Assume that all vertices in the graphs
have self-loops with weight 1 (self-loops are not shown in the
figure). In this example, there exist two clusters. As can be
seen, the smaller the number of edges between clusters is, the
lower the rank is. If there is no edge between clusters and each
cluster is a complete graph, the rank of the adjacency matrix
is 2. Therefore, extracting a low-rank matrix from the noisy
adjacency matrix corresponds to a refinement of the graph.
Fig. 2 shows an expected low-rank sparse decomposition of
the adjacency matrix.

B. Proposed Formulation

We consider to decompose a given adjacency matrix W
for an undirected graph. We utilize the similar methodology
to robust PCA (RPCA) [15] for reducing the rank of the
adjacency matrix.

Here, the minimization problem is formulated to realize the
proposed method. The optimization problem is represented as
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Fig. 2. Expected graph decomposition example applying low-rank sparse
decomposition to adjacency matrix.

follows:

arg min
Wl,Ws

∥Wl∥∗ + λ∥Ws∥1 s.t.


W = Wl +Ws

W = WT
l +WT

s

wl,ij ≥ 0
(1)

where Wl is the adjacency matrix of the low-rank component,
i.e., the refined graph, Ws is the adjacency matrix of the sparse
component, and wl,ij is the (i,j)-element of Wl.

The formulation is basically similar to the RPCA framework
[15], but we have two additional constraints. One is a symme-
try constraint W = WT

l +WT
s , that yields undirected edges.

If the input matrix is symmetric, the symmetry constraint is
not necessary. However, this constraint is added to make it a
robust formulation that can output a symmetric matrix even if
W is not symmetric. The other is the nonnegativity constraint
wl,ij ≥ 0, which prohibits edges with negative weights in the
refined graph.

C. Algorithm for Solving the Formulation

We use ADMM [18] to solve (1). It solves a class of
convex optimization problems containing a non-differentiable
convex function by using proximal mapping. It is easy to
implement, converges quickly, and is widely used in the field
of signal and image processing [18]. The objective function
(1) is composed of the nuclear norm and the ℓ1 norm, both of
which are convex functions that cannot be differentiated but
their proximal mapping can be calculated: That is, ADMM
can be applied to.

In order to apply ADMM to the minimization problem
(1), it is necessary to reformulate it into an applicable form.
In general, the optimization problem that can be solved by
ADMM is represented in the following form:

arg min
t,z

f(t) + g(z) s.t. z = Gt, (2)

where t and z are variable vectors, G is a column full rank
matrix, f(t) is a quadratic function, and g(z) is a function
that the proximal mapping can be calculated.

Here we transform (1) into the form of (2). First, there is
no quadratic functions in (1), so f(t) = 0. Next, we add
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Fig. 3. Comparison of refined and noisy graphs by MSE.

constraint terms to the objective function as follows:

arg min
Wl,Ws

∥Wl∥∗ + λ∥Ws∥1 + ιD1(Wl +Ws)

+ ιD1(W
T
l +WT

s ) + ιD2(Wl)
(3)

where

ιD1(X)=

{
0 if X ∈ D1

∞ otherwise

ιD2(X)=

{
0 if X ∈ D2

∞ otherwise

D1 := {X ∈ RN×N | X = W}
D2 := {X ∈ RN×N | ∀i, j, Xij ≥ 0}.

Then, Wl and Ws are transformed into vector forms
vec(Wl) and vec(Ws), respectively, and variable vectors z =
[zT1 , z

T
2 , . . . , z

T
5 ]

T are set to z1 = vec(Wl), z2 = vec(Ws),
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Fig. 4. Example of graph adjacency matrix decomposition by proposed method
(stochastic block graph).
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Fig. 5. Example of graph adjacency matrix decomposition by proposed method
(community graph-A).

z3 = vec(Wl+Ws), z4 = vec(WT
l +WT

s ), z5 = vec(Wl).
Here, (3) is represented as follows:

arg min
Wl,Ws

∥vec−1(z1)∥∗+ λ∥z2∥1+ ιD1(z3)+ ιD1(z4)+ ιD2(z5)

s.t. z = Gt,

where

G =


I 0
0 I
I I
T T
I 0

 , t =

[
vec(Wl)
vec(Ws)

]
.
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Fig. 6. Example of graph adjacency matrix decomposition by proposed method
(community graph-A).

It is a form that can be solved by ADMM.
The following variables are iteratively calculated until t

converges.

t(n+1) = arg min
t

ρ

2
∥z(n) −Gt− d(n)∥22

z(n+1) = prox(Gt(n+1) + d(n))

d(n+1) = d(n) +Gt(n+1) − z(n+1),

where the number of iterations is represented by n and prox(·)
is a proximal mapping. Each proximal mapping of z1, . . . , z6
is shown as follows:

z
(n+1)
1 = vec(UΛ̂VT ),

Λ̂ = diag(max(σ1 − γ, 0), . . . ,max(σN − γ, 0)),

where UΛVT is the singular value decomposition of
W

(n+1)
l + d

(n)
1 and γ is a constant. Then,

z
(n+1)
2,i = sgn(xi) ·max(|xi| − γ, 0), (4)

where the ith element of z(n+1)
2 is z(n+1)

2,i , x = vec(W
(n+1)
s +

d
(n)
2 ), and sgn(·) is the signum function. Furthermore,

z
(n+1)
3 = z

(n+1)
4 = vec(W) and z

(n+1)
5,i = max(yi, 0), where

y = vec(W
(n+1)
s + d

(n)
5 ).

III. EXPERIMENTAL RESULTS

A. Experiment Setup

We performed an experiment to restore clean adjacency
matrices by refining noisy graphs with the proposed method.
Note that the performance of the proposed method depends
on λ in (1). In the experiment, the range of λ is set to [0, 1].
Since there are random factors in the experiments, we perform
30 iterations.
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Fig. 7. Comparison of refined and noisy graphs and SSC by the best F -
measures.

We measure the performance of the proposed method by
MSE between the adjacency matrix of the ideal clean graph
and that of the refined one. MSE is represented as follows:

MSE(Wideal,Wl) =
1

N2
∥Wideal −Wl∥2F , (5)

where Wideal ∈ RN×N is an adjacency matrix of the ideal
clean graph and Wl ∈ RN×N is that of a refined graph. We
define the ideal clean graph as a graph in which each cluster
is a complete graph and is disconnected to other clusters.

For experiments, a stochastic block graph and two com-
munity graphs are used as input. The stochastic block graph
can be constructed with probability p ≤ 1 and q = 1 − p,
where p is the probability of the intra-cluster edges and q is
the probability of the inter-cluster edges. K = 10 and binary
edge weights are used.

For the community graphs, intra-cluster edges are gen-
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Fig. 8. Comparison of F-measures between the noisy and refined graphs (small
noise case).

erated by the ϵ-neighbor method. To generate inter-cluster
connections, random edges are added with probability r ≤ 1
between any pair of nodes (not restricted to inter-clusters). Two
community graphs are considered: Community graph-A has
binary edge weights, whereas community graph-B has edge
weights given by a Gaussian kernel. In the community graph-
B, two-dimensional coordinates are given for each vertex,
where vertices in each cluster have concentrated coordinates.
Therefore, the weighting criterion is based on a Euclidean
distance between vertices. In both of the graphs, K = 7. These
graphs are constructed with GSPBOX [19].

B. Comparisons of MSE and Refined Graphs

Fig. 3 shows the comparisons of MSEs as a function of
the probabilities of inter-cluster edge connectivity. The best λ
realizing the lowest MSE is used for comparison purpose. As
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Fig. 9. Comparison of F-measures between the noisy and refined graphs (large
noise case).

can be seen, refined adjacency matrices present better MSEs
than the noisy ones as expected.

Figs. 4, 5, and 6 show the adjacency matrices of the noisy
graph, the refined graph (low-rank component), the sparse
component, and the output matrix UUT of convex sparse
spectral clustering (SSC) (details are shown in Section III-C).

In Fig. 4(b), it is clear that the proposed method makes
dense parts denser and sparse parts sparser. It is also observed
the proposed method succeeded to reduce edge weights be-
tween clusters and increase edge weights in Fig. 5(b). At the
same time, the number of edges in the clusters is slightly
increased. In contrast, Fig. 6(a) has many noisy edges between
clusters: it is difficult to decompose it into low-rank and
sparse components. In Figs. 4(d), 5(d), and 6(d), SSC seems
to emphasize intra-cluster components regardless of the inter-
cluster or random edge probabilities q and r. However, the
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inter-cluster edges remain as shown in Fig. 4(d), even when q
is not very large.

C. Application to Spectral Clustering

We also perform an experiment of spectral clustering, which
is one of the possible applications of our method. Spectral
clustering uses eigenvectors of a graph Laplacian that can be
calculated from an adjacency matrix. The performance of the
proposed method is compared with SSC [20].

SSC solves the minimization problem as follows:

arg min
U∈Rn×k

⟨UUT ,L⟩F + β∥UUT ∥0 s.t. UTU = I. (6)

where L is the normalized graph Laplacian that represents
the input noisy graph, k is the number of clusters, β is a
hyperparameter, and ⟨·, ·⟩F is Frobenius inner product. SSC
needs to know k a priori. After solving (6), a sparse matrix
containing k eigenvectors of L is obtained as U. In the
experiment, the range of β is experimentally determined within
the interval [10−5, 10−3].

We use F -measure as a clustering evaluation criterion. It
has a value (0, 1], and a value closer to 1 indicates a better
clustering result. F -measure of spectral clustering using the
ideal clean graph naturally becomes 1.

The results are shown in Fig. 7. The vertical axis is F -
measure and the horizontal axis represents inter-cluster or
random edge probability q or r. As seen in the figure, the
proposed method improves performance of spectral clustering
compared to the noisy graphs. SSC is robust against edge
probability q or r, but its performance improvement is often
slight for small q and r.

Figs. 8 and 9 show the behavior of the proposed method
according to λ. Fig. 8 corresponds to the graphs with fewer
inter-cluster edges, whereas Fig. 9 is for the case that different
clusters are connected by relatively dense edges. Since the
output adjacency matrix of the proposed method becomes
close to noisy graph as λ becomes large, the performance of
the proposed method also converges to that of the noisy graph
as λ becomes large.

In Figs. 8(a)and 8(b), the noisy graphs are made with
small q and r, i.e. they are close to the ideal graph. The
performance improvements are observed around λ = 0.2.
Since the proposed method succeeds to extract the intra-cluster
edges as a low-rank component, this causes the performance
improvements.

In contrast, Figs. 9(a)and 9(b) are for the case with relatively
large q and r. In this case, the density of the inter-cluster
edges are high as well as that of the intra-cluster ones. That
means it is difficult to extract intra-cluster edges as a low-
rank component. Therefore, the performance improvements
are slight.

Figs. 8(c) and 9(c) are the results for weighted graphs.
Similar to the dense edge case, the improvements are not
very significant. This is because the low-rankness of adjacency
matrices cannot be extracted well in the proposed formulation.
That is, modifications of the formulation are needed for the
weighted graphs.

IV. CONCLUSIONS

In this paper, we propose a graph refining method using
a low-rank sparse decomposition of adjacency matrices repre-
senting graphs. In the proposed method, we applied a low-rank
sparse decomposition based on the formulation of RPCA with
additional constraints to obtain valid adjacency matrices for
undirected graphs. The optimization problem is convex and
is solved by using ADMM. In the experiment, the proposed
method cleans up the noisy graphs and the clean graphs
have expected characteristics and improves spectral clustering
performances. The proposed method can be applied without
knowing the number of clusters of data beforehand. Although
this paper performed experiments only with synthetic data, it
will be possible to improve the performance of some appli-
cations such as community detection using a graph estimated
from real data.
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