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Abstract—We consider a variant of the decision fusion problem
in the presence of Byzantines where the two states of the
system under observation are not equiprobable. In this setup, the
Byzantines can not adopt a simple corruption strategy consisting
in flipping the local decisions regardless of the estimated state of
the system. Doing so, in fact, they would reveal their presence
to the fusion center, since their reports would not follow the
expected statistics. On its side, the fusion center can exploit the
knowledge of the a-priori probabilities to improve its decision.
In view of the above observations, we first introduce a new
corruption strategy for the Byzantines, which permits them to
make the statistics of their reports indistinguishable from those
of the honest nodes. Then, we adopt the perspective of the
fusion center and we propose a nearly-optimum, efficient, fusion
strategy based on message passing, to face with the new attack.
We do so in the most challenging scenario wherein the Byzantines
are synchronised, i.e. they share a common source of randomness
allowing them to submit wrong reports in a simultaneous way.
We prove the validity of the proposed approach under several
working conditions with regard to the percentage of byzantine
nodes, the length of the observation window and the a priori-
probabilities of the system states.

I. INTRODUCTION

Decision fusion in the presence of Byzantines [1] has
received an increasing attention in the last years due to
its relevance in several scenarios including: wireless sensor
networks [2], cognitive radio [3], distributed detection [4] and
many others [5], [6], [7], [8]. In the most studied version
of the problem, a Fusion Center (FC) has to make a binary
decision about the status of an observed system, by collecting
the decisions made locally by the nodes. In doing so, the FC
must take into account the possible presence of Byzantines,
that is nodes submitting a wrong decision in the attempt to
induce a decision error. Most of the works published so far,
assume that the corruption strategy adopted by the Byzantines
consists in flipping the local decision made by the node with
a certain probability Pmal, often assumed equal to 1.

In the non-adversarial version of the problem, the Bayesian
optimal fusion rule (known as Chair-Varshney rule) has been
derived in [9] . Extending the Chair-Varshney rule to consider
the presence of the Byzantines requires that the FC knows the
positions of the Byzantines as well as the flipping probability
Pmal. This information is rarely available hence calling for
the adoption of suboptimal fusion rules. In [4], for instance,
by adopting a Neyman-Pearson setup and assuming that the

Byzantines know the true system state, the asymptotic per-
formance achievable by the FC when the size of the network
(number of nodes) increases is analysed as a function of the
percentage of Byzantines in the network.

In order to improve the estimation of the system states, the
FC can make its decision by relying on a sequence of reports
sent over an observation window of length m, referring to
m subsequent states of the observed system. In this way, it is
possible for the FC to isolate the Byzantines and consequently
ignore their reports. In this vein, the analysis of [4] is extended
in [10] to a situation in which the Byzantines are unaware
of the true system state. Byzantines isolation is achieved by
counting the mismatches between the reports received from
each node and the global decision made by the FC. To over-
come the lack of knowledge about the exact strategy adopted
by the Byzantines, the authors adopt a game-theoretic setup in
which each party makes its best choice without knowing the
strategy of the other party. A soft isolation scheme is proposed
in [11], where the reports from suspect nodes are given a
lower reputation rather than being completely discarded. Even
in [11], the lack of knowledge at the FC about the strategy
adopted by the attacker (and viceversa) is tackled by adopting
a game-theoretic formulation. A rather different approach is
adopted in [12], where a tolerant scheme that mitigates the
impact of Byzantines on the global decision is used rather
that ignoring the reports submitted by suspect nodes. When the
value of Pmal and the probability that a node is a Byzantine are
known, the optimum fusion rule under multiple observations
can be derived [13]. Since Pmal is usually unknown to the FC,
in [13] the value of Pmal used within the optimum fusion rule
and the value actually used by the Byzantines are strategically
chosen in a game-theoretic setting. One of the main results
in [13] is that the best option for the Byzantines is not to
always flip the local decision (corresponding to Pmal = 1),
since, once the malicious nodes are identified, a flipped report
still brings useful information about the sate of the system.
On the contrary, for certain combinations of the distribution
of Byzantines within the network and the length of the
observation window, it is better for the Byzantines to minimize
the mutual information between the reports submitted to the
FC and the system states (Pmal = 0.5). One of the main
drawbacks of the optimum fusion rule proposed in [13] is that
the computational cost grows exponentially with the size of the
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observation window m. This problem is resolved in [14] using
a nearly-optimum fusion scheme based on message passing
(MP) that permits to reduce such exponential complexity to
linear.

A common assumption in all the works discussed above is
that the Byzantines do not talk to each other, which means
that the Byzantine attack is not synchronized. However, in a
recent work [15], it has been proven that when the Byzantines
are synchronized, i.e. when they flip the local decisions
simultaneously1, the effect of the attack increases dramatically.
For this reason, in the rest of this work we focus in the case
of a synchronized attack, however the main conclusions of the
paper still holds in the asynchronous case.

A. Contribution

In virtually all the scenarios considered so far, the a-
priori probabilities of the two states of the observed system
are supposed to be equal. Such an assumption, however,
does not hold in many practical applications. In cognitive
radio, for instance, the possibility of finding an unoccupied
frequency band is due to the unbalanced prior probabilities of
accessing the frequency spectrum by the stakeholder (Primary
User). [16]. Distributed binary detection for monitoring and
anomaly detection applications is another scenario wherein the
assumption of balanced priors does not usually hold [17].

In this paper, we address the binary decision fusion problem
in the presence of Byzantines, when the system states are not
equiprobable. While this may seem a negligible assumption,
its impact is a significant one. A first important consequence
regards the strategy used by the Byzantines to induce a
decision error. As we will see throughout the paper, they can
no longer adopt a simple corruption strategy consisting in
flipping the local decisions regardless of the estimated state
of the system. In such a way, in fact, they would reveal their
presence to the fusion center, since their reports would not
follow the expected statistics. In turn, the fusion center can
exploit the knowledge of the a-priori probabilities to improve
its decision.

Following the above observations, this paper offers a two-
fold contribution. First, we introduce a new corruption strategy
for the Byzantines, which permits them to make the statistics
of their reports indistinguishable from those of the honest
nodes. According to the new strategy, the probability of
flipping the local decision depends on the local estimate of the
system state. As a second contribution, we derive the optimum
decision fusion strategy by taking into account the a-priori
unbalanced probabilities and, most of all, the new attacking
strategy adopted by the Byzantines. We then introduce a
nearly optimum decision fusion strategy based on the message
passing approach (similarly to what has been done in [14]),
which, at the price of a slight deterioration of the performance,
simplifies greatly the fusion rule. Throughout the paper we
assume that the fusion center has a perfect knowledge of all

1Of course the difference with respect to a non-synchronised attack makes
sense only when Pmal 6= 1.

the parameters of the system, including the attacking strategy
adopted by the Byzantines. We leave to a future work the
study, in a game-theoretic setting, of a more realistic situation
wherein the fusion center is not aware of the exact strategy
adopted by the Byzantines. The soundness of the proposed
solutions is proved through numerical simulations, aiming at
showing the validity of the new attacking strategy and the
effectiveness of the decision fusion rule based on message
passing. We do so by considering several working conditions
with regard to the percentage of Byzantine nodes, the length
of the observation window and the a priori-probabilities of the
system states.

The rest of this paper is organized as follows: in Section
II, we formalise the problem at hand and we propose the new
attack model, while in Section III we present the message
passing algorithm with unbalanced a-priors. In Section IV we
use simulations to analyze the performance of the message
passing algorithm with unbalanced a-priors as well as the new
attack model. Finally, we draw some conclusions and highlight
directions for future work in Section V.

II. PROBLEM FORMULATION

Fig. 1. Sketch of the adversarial decision fusion scenario considered in the
paper.

A. Problem Setup

The adversarial decision fusion scenario considered in this
paper is depicted in Figure 1. We let s = {s1, s2, . . . , sm}
indicate a sequence of independent and identically distributed
(i.i.d) system states, over an observation window of length
m. We assume a binary system (i.e., si ∈ {0, 1}) with
non-equiprobable states. We let P0 and P1 denote the prior
probability of state 0 and 1 respectively (w.l.o.g., we assume
P0 > P1). The n nodes collect information about the sys-
tem through the vectors x1,x2 . . .xn, with xj indicating the
observations available at node j. Based on its observation,
node j makes a local decision ui,j about system state si. We
assume that the local error probabilities are symmetric and
independent of i and j, that is p(ui,j 6= si) = ε. The state
of the nodes in the network, indicating whether a node is a
Byzantine or not, is given by the vector h = {h1, h2, . . . , hn}
with hj = 1 (res. 0) indicating that node j is honest (res.
Byzantine). The reports received by the FC are collected into
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a matrix R = {ri,j}, i = 1, . . . ,m, j = 1, . . . , n, where
ri,j is the report sent by node j relative to si. For honest
nodes, ui,j = ri,j while, for Byzantines, ui,j 6= ri,j with
some positive probability. Specifically, by assuming an error-
free transmission between the nodes and the FC, for honest
nodes we have:

p (ri,j |hj = 1, si) = (1− ε)δ(ri,j − si)+
+ ε(1− δ(ri,j − si)), (1)

where δ(a) is equal to 1 when its argument is 0 and 0
otherwise. Then, the probability of receiving a report ri,j at
the FC is given by

p (ri,j = 0|hj = 1) = (1− ε)P0 + εP1, (2)

and, obviously, p (ri,j = 1|hj = 1) = εP0 + (1 − ε)P1.
For malicious nodes, the probability that the FC receives a
wrong report depends on the attack strategy adopted by the
Byzantines and is discussed in the next section.

We assume that the states of the nodes are independent
of each other and that the state of each node is a Bernoulli
random variable with parameter α, that is, p(hj = 0) = α ∀j.
Therefore, the number of Byzantine nodes in the network is a
random variable following a binomial distribution, correspond-
ing to the maximum entropy case [13] with p (h) =

∏
j p(hj),

where p(hj) = α(1− hj) + (1− α)hj .

B. A New (Synchronized) Attack Strategy

The attack strategy for the byzantine nodes generally con-
sists in flipping the local decision with a certain probability
Pmal, independently of each other and regardless of the
observed value of the local decision, that is p(ri,j 6= ui,j) =
Pmal [10]-[14]. In the setup with unbalanced priors considered
in this paper, a similar attack strategy would make the statistics
of the byzantine reports different from that of the honest
nodes, thus easing the task of the FC, which can improve
the decision by exploiting the knowledge he has on the system
(see Section IV-A). To avoid this problem, we introduce a new
attack strategy according to which the probability of flipping
the local decision depends on the value of the decision itself.

As we said in the introduction, we assume that the Byzan-
tines are synchronized, since in this way the effectiveness
of the attack increases significantly at the price of a minor
complication [15]. In a fully symmetric setup, like the one
considered in [15] (the system states are equiprobable and
the local decision errors are symmetric), the Byzantines can
coordinate the attacks by generating, locally, a binary sequence
and then deciding to flip the reports based on the value
assumed by such a sequence. The generation of the same
sequence for all the nodes can be achieved, for instance,
by means of a pseudo random number generator fed with a
common seed.

Here we propose to generalize the synchronized attack strat-
egy proposed in [15] by considering two random sequences,
ŝ0 and ŝ1, of length m, based on which the Byzantines flip the
local decision when such a decision is 0 and 1 respectively.

Specifically, at any time instant i, the local decision is flipped
when ŝ0,i = 1 and the local decision is 0, and when ŝ1,i = 1
and the local decision is 1. We also assume that subsequent
observations are flipped independently, that is ŝ0 and ŝ1 are
i.i.d. sequences. Let P 0

mal and P 1
mal denote the probability that

ŝ0,i = 1 and ŝ1,i = 1 respectively, that is the probability that
the local decision is flipped when ui,j = 0 (res. ui,j = 1).
The above attack strategy corresponds to applying a binary
asymmetric channel (BAC) with crossover probabilities (P 0

mal,
P 1
mal) to the local decisions of the byzantine nodes. In the

above setting, for the reports received from the byzantine
nodes (under error-free transmission), we have

p (ri,j |hj = 0, si, ŝ1,i, ŝ0,i) =
(1− ε)δ(ri,j − si) + ε(1− δ(ri,j − si)), ŝ1,i = ŝ0,i = 0
(1− ε)(1− δ(ri,j − si)) + εδ(ri,j − si), ŝ1,i = ŝ0,i = 1
δ(ri,j), ŝ1,i = 1, ŝ0,i = 0
δ(ri,j − 1), ŝ1,i = 0, ŝ0,i = 1,

(3)
where ε is the error probability of the local decisions at
the nodes. The probability of receiving a report ri,j from a
byzantine node j, i.e., p (ri,j |hj = 0), can be obtained from
(3), by applying the law of total probability. Alternatively, it
can be directly derived by considering the cascade of BSC and
BAC channels accounting, respectively, for the local decision
errors and the action of the Byzantines (see Figure 2). For
ri,j = 0, we have:

p (ri,j = 0|hj = 0) = P0(1− ε)(1− P 0
mal) + P0εP

1
mal+

+ P1(1− ε)P 1
mal + P1εP1(1− P 0

mal), (4)

and, similarly, for ri,j = 1.
We now determine the relationship between P 0

mal and P 1
mal

which ensures that the statistics of the reports submitted by
the byzantine nodes are equal to that of the honest nodes.

1) Relationship between P 0
mal and P 1

mal: for a Byzantine
node, the report received by the FC can be regarded as the
output of the cascade of a BSC with crossover probability ε
and a BAC with crossover probabilities P 0

mal and P 1
mal, see

Figure 2. To lighten the notation, let us define

ρ = p(ui,j = 0) = (1− ε)P0 + εP1. (5)

Then, 1− ρ = p(ui,j = 1). We observe that since ε < 0.5 is
small and P0 > P1, we have ρ > 1− ρ.

As said before, the choice of the pair (P 0
mal, P

1
mal) must be

made in such a way that ri,j is statistically indistinguishable
from ui,j . This corresponds to impose that p(ri,j = 0) = ρ.
Therefore, the Byzantines choose the pair of flipping proba-
bilities in such a way that ρ(1 − P 0

mal) + (1 − ρ)P 1
mal = ρ,

yielding:

P 0
mal =

1− ρ
ρ

P 1
mal. (6)

With the above choice, the only degree of freedom for the
Byzantines is the choice of P 1

mal, the two synchronization
sequences being generated according to (P 0

mal(P
1
mal), P

1
mal).

Notice that in our setting P 0
mal < P 1

mal, and hence when
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1− P 1
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Fig. 2. Cascade of BSC with error probability ε (local decision), and a BAC
with error probabilities P 0

mal and P 1
mal (attack) characterizing the report rij

from a Byzantine node j.

P 1
mal spans the [0,1] interval, P 0

mal ranges from 0 to (1 −
ρ)/ρ. It is also worth observing that the mutual information
conveyed by the Byzantines towards the FC depends on the
choice of P 1

mal. With reference to the scheme in Figure 2, it
is easy to argue that the condition of zero mutual information
between the system states and the malicious reports, that is,
the condition p(rij |sij = 0) = p(rij |sij = 1), is achieved
when P 1

mal = (1 − P 0
mal). In fact, for rij = 0 (similarly, for

rij = 1), we have:

p(rij = 0|sij = 0) =(1− ε)(1− P 0
mal) + εP 1

mal,

p(rij = 0|sij = 1) =(1− ε)P 1
mal + ε(1− P 0

mal). (7)

Given the relationship between P 1
mal and P 0

mal established
in (6), the condition P 1

mal = (1 − P 0
mal) is satisfied when

P 1
mal = ρ, and P 0

mal = (1− ρ).
III. MP-BASED, DECISION FUSION WITH UNBALANCED

PRIORS

Given the sequence of reports R, the optimum decision at
the FC can be taken by looking at the bitwise Maximum A
Posteriori Probability (MAP) estimation of the system states
si, as follows:

s∗i = argmax
si∈{0,1}

p (si|R)

= argmax
si∈{0,1}

∑
{s,̂s0 ,̂s1,h}\si

p (s, ŝ0, ŝ1,h|R)

= argmax
si∈{0,1}

∑
{s,̂s0 ,̂s1,h}\si

p (R|s, ŝ0, ŝ1,h) p(s)p(̂s0)p(̂s1)p(h)

= argmax
si∈{0,1}

∑
{s,̂s0 ,̂s1,h}\si

∏
i,j

p (ri,j |si, ŝ0,i, ŝ1,i, hj)
∏
i

p(si)∏
i

p(ŝ0,i)
∏
i

p(ŝ1,i)
∏
j

p(hj), (8)

where the notation
∑
\ denotes a summation over all the

variables contained in the expression except the one listed after
the operator.

The objective function of the optimal fusion rule expressed
in (8) can be seen as a marginalization of a sum product of
functions of integer variables, and, as such, it can be computed
by resorting to Message Passing (MP) [14]. Specifically, in
our problem, the variables are the system states si, the local
random sequences ŝ0,i and ŝ1,i, and the status of the nodes
hj , while the functions are the probabilities of the reports (3)
and (1), and the a-priori probabilities p(si), p(ŝ0,i), p(ŝ1,i)

and p(hj). Hence, similarly to the approach proposed [14],
it is possible to associate the bipartite graph shown in Fig.
3 to problem (8), from which we can easily derive the cor-
responding MP algorithm that proceeds iteratively according
to the general message passing rules, until all variable nodes
are able to compute the respective marginals. However, by
comparing the graph representing the problem at hand with
that described in [14], the presence of shorter cycles (cycles
of order 3) readily comes out, due to the fact that variables si,
ŝ0,i and ŝ1,i are connected to the same function nodes. This
may be a problem, since many previous works in the field of
channel coding, e.g., see [18], has proven that, in order to get
good performance, the factor graph should not contain short
cycles. To circumvent this problem, we propose a variable
grouping approach that allows to reduce the cycles’ length
at the expenses of an slight increase of the computational
complexity.

Fig. 3. Factor graph for problem (8): the presence of a cycle of order 3,
wherein a message crosses three different nodes before returning to the sender,
is highlighted.

To elaborate, let us consider the composite variable gi =
{si, ŝ0,i, ŝ1,i}, with an alphabet of cardinality 23 = 8. These
variables can be further super-grouped into variables gi,w =
{gi,gi+1, . . . ,gi+w−1}, with cardinality 23w. Leveraging on
the definition of gi,w, assuming for simplicity m = w × q,
i.e., the number of states in the super-group is a multiple of
w, and introducing the set of q indexes I = {1, w + 1, 2w +
1, . . . ,m− w + 1}, we can rewrite problem (8) as:

s∗i = argmax
si∈{0,1}

∑
{g,h}\si

∏
k∈I

n∏
j=1

p ([R]k:k+w,j |gk,w, hj)

∏
k∈I

p (gk,w)

n∏
j=1

p(hj) (9)

where [R]k:k+w,j = {rk,j , rk+1,j , . . . , rk+w,j}, g =
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∪i∈Igi,w, and

p ([R]k:k+w,j |gk,w, hj) =

w∏
c=1

p (rk+c,j |sc, ŝ0,c, ŝ1,c, hj)

p (gk,w) =
w∏

c=1

p(sc)p(ŝ0,c)p(ŝ1,c). (10)

It is now possible to associate the bipartite graph shown
in Fig. 4 to problem (10), and derive the corresponding
MP algorithm that allows all variable nodes to compute the
respective marginals. The details of the MP algorithm are
omitted for the sake of brevity, but they can be easily derived
considering the general rules of MP, e.g., see [19] and [20].
It is worth noting that grouping the variables nodes allows
to get - in this specific case - a minimum cycle length equal
to 7. Moreover, it is straightforward to observe that when
w = m the graph contains a single super-grouped variable
g1,w and, accordingly, it reduces to a tree-graph, i.e., no
cycles are present. In this case, the MP algorithm allows
to get the optimal solution of (10), with a complexity that
grows exponentially with m. Moreover, it is easy to verify
that for w < m, i.e., for q > 1, the graph contains cycles of
minimum order 7, but the number of minimum length cycles
increases exponentially with q. Hence, we expect that the
performance of the MP algorithm improves with the increase
of w. Eventually, the value of w must be established by
considering the trade-off between complexity (that depends
exponential on 3w) and performance. In the next section, we
will show that letting w = 3 achieves such a trade-off.

Fig. 4. Factor graph for problem (10): Cycle of order 7, a message before
returning to the sender crosses seven different nodes.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the new
attack and the refined message passing-based detector for the
case of unbalanced priors. First, we show that the new (syn-
chronized) attack strategy is more harmful than the symmetric
flipping attack strategy. Then, we evaluate and discuss the
performance of the MP-based decision fusion under various

settings. Finally, we explain an unexpected effect according to
which - in the setting considered in this paper - increasing the
fraction of Byzantines α sometimes could be less harmful and
results in a lower error probability at the FC.

Throughout the rest of the paper, we consider the following
setting: a network with n = 20 nodes, prior probabilities
of the state (P0, P1) = (0.7, 0.3) and (0.9, 0.1), and a local
error probability ε = 0.1. The fraction of Byzantines in the
network is α ∈ [0, . . . , 0.45] with a quantization step of 0.05,
and P 1

mal ∈ [0, . . . , 1] with a step of 0.1. Then, from (6),
P 0
mal = ((1 − ρ)/ρ)P 1

mal, where ρ = 0.66 when (P0, P1) =
(0.7, 0.3) and ρ = 0.82 when (P0, P1) = (0.9, 0.1). For
the decision fusion, we consider two different observations
window corresponding to m = 12 and m = 21. With
regard to the MP algorithm, we consider the cardinalities
w ∈ {1, 2, 3, 4} for the super-grouped variables gi,w.

To evaluate the performance of the MP algorithm, we esti-
mate the error probability Pe at the FC over 5000 simulations.

A. Effectiveness of the new attack strategy

Fig. 5. Pe vs α for symmetric attack with Pmal = 0.5 and (P0, P1) =
(0.9, 0.1) for w = {1, 2, 3, 4}.

Fig. 6. Pe vs α for symmetric attack with Pmal = 1.0 and (P0, P1) =
(0.9, 0.1) for w = {1, 2, 3, 4}.
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Fig. 7. Pe vs α for new asymmetric attack with P 1
mal = 0.5 and (P0, P1) =

(0.9, 0.1) for w = {1, 2, 3, 4}.

Fig. 8. Pe vs α for new asymmetric attack with P 1
mal = 1.0 and (P0, P1) =

(0.9, 0.1) for w = {1, 2, 3, 4}.

In the first simulation, we show that, when the system
states are not equiprobable, the task of the FC is easier if
the Byzantines adopt a symmetric attack channel, instead of
the asymmetric attack described in Section II-B. In both cases
we assume that the FC knows the attack strategy adopted by
the Byzantines. Figures 5 through 8 show the performance of
the decision fusion under the two different attack strategies
as a function of the percentage of Byzantines nodes present
in the network. For these experiments we use the following
settings: (P0, P1) = (0.9, 0.1) and w = {1, 2, 3, 4}.

To compare the two cases, we considered Pmal = 0.5 and
Pmal = 0.1, for the case of symmetric attack, whereas, under
the new attack, we report the results obtained with P 1

mal ∈
{0.5, 1.0}. This is fair comparison since P 1

mal corresponds to
the largest between the two error probabilities in the BAC,
so for instance, the cases Pmal = 1 and P 1

mal = 1, both
correspond to the highest flipping rate that can be applied by
the Byzantines. In the latter case, P 0

mal = ((1− ρ)/ρ)P 1
mal
∼=

0.15 (which preserves the statistics).
As it can be seen by comparing Figure 5 to Figure 7, and

Figure 6 to Figure 8, the asymmetric attack is more harmful

than the symmetric attack. For instance, with α = 0.45 and
w = 1, for the case with Pmal, P

1
mal = 1, the error probability

at the FC is Pe = 0.0018 under the symmetric attack and it
increases up to Pe = 0.014 under the new attack as reported in
Figure 6 and Figure 8, respectively. These results confirm the
intuition that the symmetric attack does not work well in the
case of unbalanced priors; hence, justifying the introduction of
a new attack which keeps the statistics of the reports submitted
by the Byzantines equal to those of the reports produced by
the of the honest nodes.

We also notice that, in all the figures, the decision accuracy
at the FC increases as the number of grouped variables
increases. This is expected since the behavior of the message
passing algorithm gets closer to the optimum fusion rule as
the number of grouped variables increases. This improvement
is achieved at the cost of an exponential growth of the
execution time. For instance, in Figure 8, the execution times
in seconds are: 5.6035 × 10+3s for w = 1, 1.3677 × 10+4s
for w = 2, 5.7810 × 10+4s for w = 3, and 3.8611 × 10+4s
for w = 4. Based on these results, we decided to let w = 3,
which provides a good tradeoff between decision accuracy and
computational complexity.

B. Performance of the decision fusion and optimum attacking
strategy

In this section, we analyze the performance of the decision
fusion for various settings. Specifically, we show the perfor-
mance of Pe vs P 1

mal for the cases {P0, P1} = {0.7, 0.3} and
{0.9, 0.1}, m = {12, 21} and α = [0.3, 0.4, 0.45]. Then, based
on such analysis, we discuss the choice of the optimal P 1

mal.
The error probabilities of the MP-based detector in the var-

ious cases are reported in Figures 9 through 12. As a first ob-
servation, we notice that when (P0, P1) = (0.7, 0.3) the error
probability is higher than in the case (P0, P1) = (0.9, 0.1) for
both observation windows m = {12, 21}. This is an expected
behaviour since in general when (P0, P1) = (0.9, 0.1) the FC
has more a-priori information about the system state hence
the decision is easier. Moreover, in all cases, using a larger
observation results in a lower Pe.

From the figures, we observe that, thanks to the synchro-
nization among the Byzantines, the attack is very powerful
also for low values of P 1

mal. At a first sight, it may seem
strange that the Byzantines tend to do not use all their available
power and prefer to attack with a low P 1

mal, the optimum
P 1
mal (the one resulting in the largest error probability) being

well below 0.5 in all the cases. Such values are also smaller
than the values corresponding to a zero mutual information
between the reports submitted to the FC and the system state,
which are P 1

mal = 0.66 and 0.82 for (P0, P1) = (0.7, 0.3)
and (0.9, 0.1) respectively. Such a counter-intuitive behaviour
can be explained as follows. The zero mutual information is
clearly the best strategy for the Byzantines if we assume that
the FC can correctly identify them. In such cases, in fact, the
FC can still get some useful information about the state of
the observed system, unless the mutual information between
the reports and the system state is zero. However, by keeping
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the flipping probability low, the Byzantines can avoid being
identified and still induce an error due to the synchronisation
of the attack. This would not be true with an asynchronous
attack, since in such a case the low flipping probability would
have no effect on the decision at the FC most of the times.

Fig. 9. Pe vs P 1
mal for (P0, P1) = (0.7, 0.3), m = 12 and α =

[0.3, 0.4, 0.45].

Fig. 10. Pe vs P 1
mal for (P0, P1) = (0.7, 0.3), m = 21 and α =

[0.3, 0.4, 0.45].

In some cases, most noticeably in Figure 10, we observe an
unexpected behaviour of the error probability as a function
α, i.e, the percentage of Byzantine nodes in the network:
increasing the number of Byzantines in the network results
in a lower error probability.

A possible explanation of this behaviour may be rooted in
the fact that the FC has full knowledge of the attack strategy
including P 1

mal and α, and it exploits such a knowledge
to implement the decision fusion rule by means of the MP
algorithm (see Section III). In a certain sense, a larger α forces
the FC to be more cautious in the interpretation of the reports
provided by the nodes (the MP algorithm is applied with a
larger α) and this, in turn, allows to handle better the cases
where the actual number of Byzantines is larger than αn, a
value which represents only the average number of Byzantines

Fig. 11. Pe vs P 1
mal for (P0, P1) = (0.9, 0.1), m = 12 and α =

[0.3, 0.4, 0.45].

Fig. 12. Pe vs P 1
mal for (P0, P1) = (0.9, 0.1), m = 21 and α =

[0.3, 0.4, 0.45].

in the network. The impossibility of running the optimum
fusion algorithm for the values of m when such an effect
occurs (m = 21 in Figure 10), did not allow us to investigate
whether this effect is due to the non-optimality of the MP
algorithm or it is an intrinsic characteristic of the problem at
hand.

V. CONCLUSIONS AND FUTURE WORKS

We have addressed a new variant of the decision fusion
problem in the presence of Byzantines wherein the two states
of the system under observation are not equiprobable. We
have introduced a new unbalanced attack strategy for which
the statistics of the reports submitted by the Byzantines are
equal to those produced by the honest nodes, thus making it
more difficult for the FC to isolate the corrupted nodes. Then,
we have introduced a new fusion strategy, based on message
passing, specifically thought to cope with the new unbalanced
attack.

The analysis of the simulation results highlights some
specific peculiarities of the unbalanced-priors setting (with
synchronized attacks), the most relevant of which being the
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possibility for the Byzantines to attack the system with a
relatively small strength (low P 1

mal), yet causing a significant
deterioration of the detection accuracy. The possibility that a
smaller number of Byzantines results is a larger error proba-
bility is also worth attention and calls for further investigation.

Throughout the paper we have assumed that the FC is aware
of the percentage of Byzantines present in the network and
the flipping probability used to corrupt the reports. In future
works, we plan to use game theory to relax such hypotheses.
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