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Abstract—In this research, we propose a super-resolution
method of complex image using Complex Nonseparable Oversam-
pled Lapped Transforms (CNSOLTs). CNSOLTs are complex-
coefficient transforms based on lattice structure. CNSOLTs are
possible to design an analysis-synthesis system which simul-
taneously satisfies nonseparable, redundant, linear-phase, and
compact support properties under the constraint of the Parseval
tight frame. In addition, CNSOLTs are possible to select a
redundancy with arbitrary rational number. The effectiveness of
the proposed method is evaluated by super-resolution simulation
of complex-coefficient images.

I. INTRODUCTION

In many image processing applications, images with high
spatial resolution are always required. Image super-resolution
(SR) is a method of estimating a high resolution (HR) image
from one or more low resolution (LR) images using a signal
processing technique [2]–[4]. SR methods are widely used for
image processing application where it is difficult to acquire
HR images due to limitations of sensing devices or high
cost. For instance, synthetic aperture radar (SAR), biomedical
imaging, microscopy. SR algorithms can be broadly classified
into two classes: single image or multiple image. Many real-
world applications require reconstruction of HR image from a
single observation. In situations like these, single-image based
SR methods may work well.

Many of the recently proposed single-image SRs are based
on learning-based algorithms. In the super-resolution based on
the learning, training data sets consisting of the LR images and
the corresponding HR images are necessary. An HR image
can be restored by learning the prior information from the
relationship between a training pairs and applying it to the
given LR image. Its performance is heavily dependent on the
training data set, which requires huge amounts of LR images
and HR images for training. Recently, dictionary learning
methods based on sparse representation has attracted attention
and has achieved high SR performance [1].

Early major study on learning-based SR method using
sparse representation has been proposed by Yang et al. [5].
They assumed that the local patches extracted from LR images
in a training data set can be sparsely represented by consisting
redundant dictionary. K-SVD, proposed by Aharon et al. [9],
is a typical dictionary design method for sparse representation
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Fig. 1: (a) Parallel Structure of P -chanel filter banks with
downsampling factor M and (b) the polyphase matrix rep-
resentation, where {Hp(z)} and {Fp(z)} are analysis and
synthesis filters, respectively.

of patches. However, since the K-SVD dictionary does not
have useful structural restrictions for image processing such
as tight-frame property, invariance, etc, its efficiency is poor
as compared with analytical dictionaries.

In [7], we have proposed complex nonseparable oversam-
pled lapped transforms (CNSOLTs) for sparse representation
of complex-valued images. CNSOLTs can construct a redun-
dant analysis/synthesis system with complex-valued atomic
images that satisfy non-separable, symmetric, redundant, and
compact-support properties using constraints by lattice struc-
ture.

Fig. 1 (a) shows a parallel structure of P -channel multidi-
mensional nonseparable filterbanks. The system consists of an
analysis and synthesis bank, where z ∈ CD denotes a D × 1
complex variable vector in the D-dimensional z-transform
domain, Hp(z) and Fp(z) are the transfer functions of the p-th
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analysis and synthesis filter, respectively. In the followings, we
consider only the two-dimensional (2-D) separable decimation
case, i.e., D = 2.

In this work, we propose to use CNSOLT for super-
resolution of complex-valued images. In order to show the
effectiveness of the proposed method, we compare the perfor-
mance with the bicubic interpolation method and the undeci-
mated Haar transform.

II. SINGLE-IMAGE SUPER-RESOLUTION BY FISTA

In this section, we review the formulation of SISR prob-
lem, and then introduce fast iterative shrinkage/thresholding
algorithm as a solver for the problem.

A. Problem Formulation

Fig 2 shows the framework of our problem setting. In this
model, x ∈ CN is the observed LR image. Let u ∈ CM (M >
N) be an unknown original HR image and

x = SHu + w, (1)

where H ∈ CM×M is a blur operator, S ∈ RN×M is a
decimation operator, and w ∈ CN is a additive noise. This
SR problem is treated as a problem to estimate the unknown
original image u from the known observation image x. Under
these conditions, the estimation method using the sparseness
improves the performance. We assume that the original image
u can be expressed as a linear combination of a small number
of element images, that is

u = Dy. (2)

where y ∈ CL is a coefficient vector and D ∈ CM×L is
an dictionary. The super-resolution problem is replaced by
the problem of estimating the sparse coefficient vector y and
formulated as `1-norm regularized least squares problem

ŷ = arg min
y

‖x− SHDy‖22 + λ‖y‖1, (3)

where λ ∈ R+ is the trade-off parameter between the first and
second term in the right hand side, i.e., fidelity and sparsity.

Fig. 2: Framework of the problem setting

Algorithm 1 Image restoration with FISTA

1: Data: Observed image x ∈ CN
2: Result: Restored image û ∈ CM
3: {initialization}
4: t← 0
5: y(0) ← AHx
6: v(1) ← y(0)

7: s1 ← 1
8: Find y that minimizes { 12‖x−Ay‖22 + ‖y‖1}
9: repeat

10: t← t+ 1
11: y(t) ← T λ

L

(
v(t) + 1

LAH
(
x−Av(t)

))
12: st+1 ← (1 +

√
1 + 4s2t )/2

13: s̃t+1 ← (st − 1)/st+1

14: v(t+1) ← y(t) + s̃t+1(y(t) − y(t−1))
15: until ‖y(t) − y(t−1)‖22/‖y(t)‖22 < ε
16: û← Dy(t)

B. Fast Iterative shrinkage/thresholding algorithm (FISTA)

If a vector y = [y0, y1, · · · , yL−1]
T is complex-valued, `1-

norm regularization term in (3) can be rewritten by linear
combination of `2-norms of real-valued vectors as

‖y‖1 =
L−1∑
`=0

√
Re(yl)2 + Im(y`)2 =

L−1∑
`=0

‖g`‖2, (4)

where g` = (Re(y`), Im(y`))
T .

Algorithm 1 shows the FISTA for complex-valued signals,
where (·)H denotes the Hermitian transpose of matrix. Tλ(y)
is the soft shrinkage operator defined by

Tλ(v) = (1− λ (1� |v|))+ � v, (5)

where �,� are vector operators that represent element-wise
multiplication and division, respectively, and operator |·| :
CN → RN+ takes element-wise absolute value.

III. REVIEW OF COMPLEX NONSEPARABLE
OVERSAMPLED LAPPED TRANSFORMS

A selection of dictionary D affects the performance of SR
method in (3). In this section, we propose to use CNSOLTs
as the dictionary D.

A. Lattice Structure of 2-D Type-I CNSOLT

A lattice structure of 2-D CNSOLT analysis bank E(z) is
given by cascade of matrices {G{d}k (zd)} as

E(z) = Φ

(
Kv∏
k=1

G
{v}
k (zv)

)(
Kh∏
k=1

G
{h}
k (zh)

)
·E0(z), (6)

where E0(z) ∈ CP×M [CD] is a PU initial matrix and
{G{d}k (zd) ∈ CP×P [CD]} are propagation matrices of which
d-th dimension order is NG,d ∈ N and the other is 0,
Φ ∈ CP×P is a diagonal matrix related to symmetry of filters
and its each element is ±1 or ±j.

1310

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 3: A lattice structure of P -channel 2-D Type-I CNSOLT with decimation factor M

The propagation matrix of Type-I CNSOLT is given by

G
{d}
k (zd) = V

{d}
k Q

{d}
k (zd) (7)

where

V
{d}
k =

(
W
{d}
k O

O U
{d}
k

)
(8)

Q
{d}
k (zd) = B̂

{d}
k Λ(zd)B̂

{d}H
k (9)

Λ(zd) =

(
IbP2 c

O

O z−1d IbP2 c

)
(10)

B̂
{d}
k =

1√
2

(
Ĉ
{d}
k Ĉ

{d}∗
k

Ŝ
{d}
k Ŝ

{d}∗
k

)
. (11)

Ĉ
{d}
k =


diag

(
ĉ
{d}
k,0 , ĉ

{d}
k,1 , · · · , ĉ

{d}
k,bP4 c−1

)
,

bP4 c even

diag
(
ĉ
{d}
k,0 , ĉ

{d}
k,1 , · · · , ĉ

{d}
k,bP4 c−1

, 1
)
,

bP4 c odd

(12)

Ŝ
{d}
k =


diag

(
ŝ
{d}
k,0 , ŝ

{d}
k,1 , · · · , ŝ

{d}
k,bP4 c−1

)
,

bP4 c even

diag
(
ŝ
{d}
k,0 , ŝ

{d}
k,1 , · · · , ŝ

{d}
k,bP4 c−1

, j
)
,

bP4 c odd

(13)

ĉ
{d}
k,p =

(
−j cos θ

{d}
k,p −j sin θ

{d}
k,p

cos θ
{d}
k,p − sin θ

{d}
k,p

)
(14)

ŝ
{d}
k,p =

(
sin θ

{d}
k,p cos θ

{d}
k,p

j sin θ
{d}
k,p −j cos θ

{d}
k,p

)
, (15)

where the superscript “∗” denotes complex-conjugate,
W
{d}
k ,U

{d}
k ∈ RbP2 c×bP2 c are invertible matrix, and θ{d}k,p ∈ R

is the angle parameter.
The initial matrix is given by

E0(z) = V0FMJM . (16)

Where FM ∈ CM×M is any M × M unitary matrix that
satisfies F∗MJ = FM. V0 ∈ RP×M is an arbitrary left-
invertible matrix. We adopt a centered discrete Fourier trans-
form (CDFT) matrix as FM [10]. The p-th row and m-th
column element of 1-D M -point CDFT matrix is defined as

fm,p =
1√
M

exp

(
−jπ p(2m+ 1)

M

)
(17)

in the element-wise representation.

B. Dictionary Learning

The dictionary D based on CNSOLT can be realized with
synthesis filter bank R(z) = z−n̄Ẽ (z) and can be designed
by example-based learning. Here, Ẽ (z) is paraconjugate of
analysis bank E (z) and n̄ is the polyphse order vector [8].
The dictionary learning method is formulated as{

D̂, {ŷi}
}

= arg min
D,{yi}

1

S

S−1∑
i=0

‖xi −Dyi‖22 s.t. ‖yi‖0 ≤ K,

(18)
where ‖ · ‖0 denotes `0-norm, i.e., the number of non-zero
elements, and {xi} denotes the training images. A typical
dictionary learning method consists of two steps: “sparse
approximation” and “dictionary update” stage. These two
processes are repeatedly performed in order to obtain an
optimum dictionary.
• Sparse approximation stage finds coefficient vector yi

such that the approximation error is minimized on the
training image xi under the K-sparse constraint. This
problem is formulated as

ŷi = arg min
yi

‖xi −Dyi‖22 s.t. ‖yi‖0 ≤ K. (19)

• Dictionary learning stage finds dictionary D such that the
approximation error is minimized on the training image
xi CNSOLT dictionary can be designed by controlling
angle parameter vectors φ = (φ0, φ1, · · · , φP−1)

T and
θ = (θ0, θ1, · · · , θJ−1)

T , and sign parameters s =
(s0, s1, · · · , sI−1)

T , where θ, s are obtained by Givens
rotations factorization form of parameter matrices of
CNSOLT. This optimization problem is formulated as

Θ̂ = arg min
Θ

1

S

S−1∑
i=0

‖xi −Dyi‖22 , (20)

where DΘ is the CNSOLT dictionary given by Θ =
{φ,θ, s}. The updated dicionary D = DΘ is used in the
sparse approximation stage in the next iteration.

IV. PERFORMANCE EVALUATION

In order to show the effectiveness of the proposed method,
super-resolution simulation of a complex image is conducted
and comparison with existing method is performed. PSNR is
used as an evaluation index of the super-resolution image.
Bicubic interpolation (BCI) and undecimated Haar transforma-
tion (UDHT) are used as comparison objects for performance
evaluation. In the observation process, we set the operator H
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as Gaussian blur with σ2
blur = 2.00×10−4, and the operator S

as 2×2 decimation matrix. We use the FISTA as the solver for
the super-resolution problem (3) except for BCI. Table I shows
the configurations of CNSOLT and UDHT. Fig. 5 shows the
original LR image and observed HR image for the simulation.
Fig. 4 shows the atomic images of the CNSOLT dictionary.

Simulation results are shown in Fig. 6. Compared to
BCI, the proposed method improves PSNR by about 8[dB].
In addition, the proposed method achieves low redundancy
while realizing the same degree of restoration performance as
UDHT.

V. CONCLUSION

In this research, we proposed a super-resolution method
of complex image using CNSOLT. By comparing super-
resolution performance with BCI and FISTA with UDHT, the
effectiveness of the proposed method was shown. We will
evaluate the performance against actual millimeter wave radar
images in the future.
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