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Abstract—In this study, we discuss a technique of tensor com-
pletion using multi-way delay-embedding, which is an emerging
framework for the tensor completion problem. This consists of
simple three steps: (1) multi-way delay-embedding transform
(MDT) of the input incomplete tensor, (2) completing the trans-
formed high-order tensor, (3) inverse MDT of the completed high-
order tensor. In spite of the simplicity, it can be used as a powerful
tool for recovering the missing elements and slices of tensors. In
this paper, we propose an improvement method for MDT based
tensor completion by exploiting a common phenomenon that the
most real signals are commonly having Fourier bases as shift-
invariant features in its auto-correlation matrix. By considering
the cosine bases in high-order tensor, several factor matrices in
the low-rank tensor decomposition problem can be automatically
decided. The experimental results show the advantages of the
proposed method.

I. INTRODUCTION

Completion is a signal processing technique to estimate
the values of missing elements in incomplete data. The
model/assumption of data is the most important factor to
decide the completion results. Many models have been studied
for the completion problem such as low rank matrix model
[9]–[12], [14], [32], [33], [35], [40], [47], [54], [55], [60],
[64], [72], low total variation (TV) models [17], [27]–[29],
[38], [52], [68], [69], low Tucker rank tensor model [15], [23],
[24], [31], [34], [41], [42], [77], low CP rank tensor model [1],
[30], [50], [51], [61], [62], [65], [71], [74], [76], and tensor-
train/network model [2], [3], [26], [57], [73], [75]. In general,
the best universal model does not exist, and individual models
have strong and weak points at the same time with respect to
applications.

Usually, matrix/tensor completion problems can be sepa-
rated into two types of formulations: The one formulation is
given by

minimize
X

||Q~ (T −X )||2F , (1)

s.t. X ∈ A,

where T ∈ RI1×I2×···×IN is an input incomplete tensor,
Q ∈ {0, 1}I1×I2×···×IN is a binary tensor indicating ob-
served/missing elements by 1/0, X is an output complete
tensor, and A ⊂ RI1×I2×···×IN is a model based subset. For
example, AR can be defined by a set of low-rank matrices,
{X = WH ∈ RI1×I2 |W ∈ RI1×R,H ∈ RR×I2}, in rank-
R matrix completion problem [5]–[7], [33], [46], [48]. In this
way, the definition of set A represents the model/assumption in

this formulation. Factorization based matrix/tensor completion
models can be included in this formulation.

The another formulation is given by

minimize
X

f(X ), (2)

s.t. ||Q~ (T −X )||2F ≤ ε,

where f : RI1×···×IN → R is a cost function which repre-
sents the model/assumption, and ε ≥ 0 is a noise threshold
parameter. When observed entries of T are noise-free, we
set ε = 0. For example, when the cost function is defined
by the matrix nuclear-norm, fLR(X) = ||X||∗, then the
problem is characterized as the well-known nuclear norm
minimization [11]. When the cost function is defined by the
total variation (TV), fTV (X) = ||X||TV , then the problem
is characterized as the TV minimization [78]. Many studies
have considered convex functions for f(·), and the convex
optimization algorithms have been well established at the same
time [4], [8], [13], [16], [22], [25], [67].

Usually, the former approach must solve some complicated
non-convex optimization, however it has a high model flex-
ibility and the high level completion can be performed. In
the previous study [66], we have considered the former model
based on the low rank tensor factorization in embedded space,
and reported the promising results. The new tensor completion
model can capture the shift-invariant features of tensor, and
succeed to recover the missing slices in tensors. In this paper,
we tackle the further improvements of the method by using
the cosine functions based on the common phenomenon in
real world signals.

The rest of this paper is organized as follow: In Section I-A,
we first define the notations used in this paper. Section II
briefly review the technique of delay-embedding based tensor
completion [66]. In Section III, we show some examples of
shift-invariant features and propose an improvement technique
for the delay-embedding based tensor completion. Section IV
shows the experimental results to demonstrate the advantages
of the proposed method. In Section V, we discuss the related
works and some issue in the MDT based methods. Finally, we
conclude this paper in Section VI.

A. Notations

A vector is denoted by a bold small letter a ∈ RI . A matrix
is denoted by a bold capital letter A ∈ RI×J . A higher-order
(N ≥ 3) tensor is denoted by a bold calligraphic letter A ∈
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RI1×I2×···×IN . The ith entry of a vector a ∈ RI is denoted
by ai or a(i), and the (i, j)th entry of a matrix A ∈ RI×J
is denoted by aij . The (i1, i2, ..., iN )th entry of an N th-order
tensor A is denoted by ai1i2···iN , where in ∈ {1, 2, ..., In}
and n ∈ {1, 2, ..., N}. The Frobenius norm of an N th-order
tensor is defined by ||A||F :=

√∑
i1,i2,...,iN

a2
i1i2···iN .

A mode-k unfolding (matricization) of a tensor X ∈
RI1×I2×···×IN is denoted as X(k) ∈ RIk×Πn6=kIn . A
mode-k multiplication between a tensor X and a ma-
trix/vector A ∈ RR×Ik is denoted by Y = X ×k A ∈
RI1×···×Ik−1×R×Ik+1×···×IN , where the entries are given by
yi1···ik−1rik+1···iN =

∑
ik
xi1···ik−1ikik+1···iNarik , and we have

Y (k) = AX(k).
If we consider N matrices U (n) ∈ RIn×Rn and an N -th

order tensor G ∈ RR1×R2×···×RN , then the multi-linear tensor
product is defined as

G × {U} := G ×1 U
(1) ×2 U

(2) · · · ×N U (N). (3)

Moreover, a multi-linear tensor product excluding the n-th
mode is defined as

G ×−n {U} := G ×1 U
(1) · · · ×n−1 U

(n−1)

×n+1 U
(n+1) · · · ×N U (N). (4)

When we consider Tucker decomposition, G and U (n) in
Eq. (3) are referred to as the core tensor and factor matrices,
respectively.

II. DELAY-EMBEDDING BASED TENSOR COMPLETION

In this section, we review a technique of tensor comple-
tion using multi-way delay embedding [66]. The framework
consists of simple three steps as follow:

Step 1:Multi-way delay embedding transform (MDT) of the
input incomplete tensor, T H = H(T ), where H(·)
is the MDT operator.

Step 2: Completion of the transformed high-order tensor,
XH = φ(T H), where φ is a function of tensor
completion.

Step 3: Inverse MDT of the completed high-order tensor,
X = H−1(XH), where H−1(·) is the inverse MDT
operator.

Figure 1 shows the concept of MDT based tensor completion.

A. MDT and inverse MDT

In this section, we explain MDT and inverse MDT in details.
1) Standard delay-embedding transform: Delay-embedding

is a technique for reconstructing the attractor from the gener-
ated/observed time-series signals, which is originally used for
the study of dynamical systems [49], and system identification
[56]. Recently, the delay-embedding comes into attentions as
a useful and powerful tool for the time-series analysis such as
brain signals [20], [21], [39], [45], [53].

Delay-embedding is a technically equivalent to the Hanke-
lization. Let v = (v1, ..., vL)

T ∈ RL be a vector, the standard

Fig. 1: Concept of MDT based tensor completion
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Fig. 2: Lorentz system and its delay embedded space [66]

delay-embedding transform of v with τ is given by

Hτ (v) :=


v1 v2 · · · vL−τ+1

v2 v3 · · · vL−τ+2

...
...

. . .
...

vτ vτ+1 · · · vL

 ∈ Rτ×(L−τ+1).

(5)

Note that Hτ (v) is a Hankel matrix. Considering Han-
kel matrix as a set of τ -dimensional vectors, Hτ (v) =
[h1, ...,hL−τ+1], a sequence of points in τ -dimensional space
is referred to as the reconstructed attractor which generated the
signal v. Figure 2 shows example of an attractor and a signal.
From the Figure 2, we can see the attractor is approximately
spanned by the low-dimensional linear subspace.

Delay embedding can be regarded as a linear operation since
a unique duplication matrix S ∈ {0, 1}τ(L−τ+1)×L exists that
satisfies

vec(Hτ (v)) := [hT1 , ...,h
T
L−τ+1]

T = Sv, (6)

where vec(·) is a vectorization operator which unfolds a matrix
to a vector. From Eq.(6), we have

Hτ (v) = fold(L,τ)(Sv), (7)

where fold(L,τ) : Rτ(L−τ+1) → Rτ×(L−τ+1) is a fold-
ing/reshaping operator from a vector to a matrix. The size
of matrix S is little bit large but it is very sparse. The
linear algebraic way (7) would be easier than copy-paste
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Fig. 3: An conceptual visualization of delay embedding and
its inverse transform

while shifting for implementing using some language such as
MATLAB and Python, where S should be defined as a sparse
matrix.

2) Inverse delay-embedding transform: In this section, we
consider to define the inverse transform of delay-embedding,
H−1
τ (·). Note that the delay embedding transform H(·) is not

a bijective function but an injective function. Thus, we have

v = H−1
τ (Hτ (v)) for any v ∈ RL, (8)

but V 6= Hτ (H−1
τ (V )) when V ∈ Rτ×(L−τ+1) is a general

matrix. In this study, we consider the Moore-Penrose pseudo-
inverse of duplication matrix as S† := (STS)−1ST , and the
inverse delay embedding transform for a matrix V is defined
by

H−1
τ (V ) := S†vec(V ). (9)

Figure 3 shows an image of operations of delay-embedding
and inverse delay-embedding. We can see that inverse delay-
embedding transform outputs the average values of individual
anti-diagonal elements of the input matrix.

3) Multi-way extension: We consider to generalize the
delay-embedding for high-order tensors, and we refer this
as MDT. Roughly speaking, multi-way extension of delay-
embedding is the same manner as the convolution. For ex-
ample, 2d-convolution of matrix data with some window
is calculated by shifting window along with x and y axes
and obtaining the inner-product of the focused region and
the weight function. Two-way delay-embedding is performed
by shifting (τ1, τ2)-window along with x and y axes and
stacking the copy of focused region in the form of a 2d
grid (see Figure 5(a)). In similar way, MDT of N -th order
tensor is performed by shifting (τ1, ..., τN )-window along with
individual axes and stacking the copy of focused volume in
the form of an N -dimensional grid. Thus, MDT of N -th order
tensor outputs a 2N -th order tensor.

In mathematically, MDT of an N -th order tensor X ∈
RI1×I2×···×IN with τ = (τ1, ..., τN ) can be performed by

H(X ) := fold(I,τ )(X ×1 S1...×N SN ), (10)

where fold(I,τ )(·) is a reshaping function of
tensors from Rτ1(I1−τ1+1)×···×τN (IN−τN+1) to
Rτ1×(I1−τ1+1)×···×τN×(IN−τN+1). The inverse MDT is
given by

H−1(V) := fold−1
(I,τ )(V)×1 S

†
1...×N S

†
N . (11)

We have X = H−1(H(X )).

B. Low-rank tensor factorization

Let us put

T H = H(T ) ∈ RJ1×···×JM , (12)

QH = H(Q) ∈ {0, 1}J1×···×JM , (13)

then we consider to optimize the following optimization prob-
lem

minimize
G,{U(m)}Mm=1

||QH ~ (T H − G × {U})||2F , (14)

s.t. G ∈ RR1×···×RM ,U (m) ∈ RJm×Rm(∀m),

where Rm ≤ Jm(∀m). The values of Rm decide the multi-
linear rank of the completed tensor. Because of the issue of
non-uniqueness in the tensor completion, we employ rank
increment approach. In other words, we solve Problem (14)
with Rm = 1 at the first. Furthermore, using the result as
initialization, we solve Problem (14) again with increased Rm.
We repeat its procedure until that the cost function in (14) is
sufficiently small.

Finally, the result of tensor completion is given by

X̂ = H−1(Ĝ × {Û}). (15)

III. PROPOSED METHOD

A. Visualizing common shift-invariant features

In this section, we show some common properties about
the shift-invariant features in visual/time-series data. It has
a close relationship with MDT. First, Fig. 4(b) shows an
example of the shift-invariant features of the time-series, which
is generated as the left singular vectors of singular value
decomposition (SVD) of the Hankel matrix (see Fig. 4(a)) with
τ = 50. Fig. 4(c) shows the right singular vectors multiplied by
individual singular values. We can see that the shift-invariant
features is quite similar to the Fourier bases in Fig. 4(b).
By contrast, the specific information of the signal affects the
global coefficient features in Fig. 4(c).

Next, we consider the shift invariant feature of 2D-image
in Fig. 5. MDT with τ = [32, 32] is performed and Hankel
tensor is decomposed by the higher-order SVD (HOSVD) [18]
(see Fig. 5(a)). From the first and third factor matrices of
HOSVD, we obtain similar patterns to 2D-Fourier bases (see
Fig. 5(b)). Global coefficient matrices have the multi-view
features related with the convolution of corresponding shift-
invariant patterns.

B. MDT based cosine model fitting

In Section III-A, we explained that some real time-series
signals/images have shift-invariant features, and it is almost
the same as Fourier bases. Thus, we consider it as prior
information for the data recovery problem. In other words,
we assume that some U (k) (k ∈ K) corresponding to local
shift invariant features are cosine bases, and we remove
these U (k) from the optimization parameters in Problem (14).
Furthermore, we consider the low-rank assumptions for only
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Fig. 4: Shift-invariant features of the time-series signal
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U (k) (k ∈ K) and some additional modes r ∈ R such as RGB
colors. Hence, the optimization problem is modified as

minimize
θ={G,U(r),r∈R}

f(θ) := ||QH ~ (T H − G × {U})||2F , (16)

s.t. G ∈ RR1×···×RM , Rm = Jm(m 6∈ {K ∪ R}),
U (m) = IJm(m 6∈ {K ∪ R}),
U (k) = BJk,Rk

(k ∈ {K}),
U (r) ∈ RJr×Rr (r ∈ {R}),

where θ is a set of optimization parameters, IT is an (T ×T )-
identity matrix, and BT,L = [b(1), ..., b(L)] ∈ RT×L is the
first L-th discrete cosine bases in T -dimensional space which
is defined by

b
(l)
t := cos

{
π(l − 1)

T

(
t− 1

2

)}
, (17)

for t ∈ {1, ..., T} and l ∈ {1, ..., L}.
1) Optimization algorithm: Here, we consider to solve

Problem (16) by using the auxiliary function approach. When
we put the auxiliary function with θc := {Gc,U c} as

h(θ|θc) := ||T c
H − G × {U}||2F , (18)

T c
H := QH ~ T H + (1−QH)~ (Gc × {U c}),

then the update rule θc+1 ← argminθ h(θ|θc) has a non-
increasing property for the original cost function in (16). Also
note that we have f(θc+1) ≤ h(θc+1|θc) ≤ h(θc|θc) = f(θc),
and the complete minimization is not necessary but it is
sufficient that the decreasing the h(θ|θc) for decreasing f(θ).

For the implementation, we consider the following two
steps: (1) update the auxiliary tensor by

Z ←QH ~ T H + (1−QH)~ (Gc × {U c}), (19)

and (2) update G and U (r) (r ∈ R) using the alternating least
squares (ALS) algorithm to optimize

minimize
θ={G,U(r),r∈R}

f(θ) := ||Z − G × {U}||2F , (20)

s.t. G ∈ RR1×···×RM , Rm = Jm(m 6∈ {K ∪ R}),
U (m) = IJm(m 6∈ {K ∪ R}),
U (k) = BJk,Rk

(k ∈ {K}),
U (r)TU (r) = IRr

(r ∈ {R}).

From the ALS, G and U (r) are updated by

U (r) ← Rr leading singular vectors of Y (r)
(r); (r ∈ R) (21)

G ← Z × {UT }; (22)

where Y(r) = Z ×−r {UT }.
2) Tensor factorization with rank increment: Rank estima-

tion is an important issue of tensor factorization [63], [70]. In
this paper, we employ the rank increment method for obtain
optimal rank setting of tensor factorization. We consider the
following problem

minimize
Rl(l∈{K∪R})

∑
l

Rl,

s.t. ||QH ~ (T H −X )||2F ≤ ε, (23)
rank(X ) = (R1, ..., RM ),

Rm = Jm(m 6∈ {K ∪ R}),

where ε is a noise threshold parameter. This criterion implies
a strategy that the low-rank solution is better in a set of the
solutions X which having the same error from the target
tensor. However, it is not easy to obtain because there are many
combinations of rank setting (R1, ..., RM ) such like

∏
lRl,

and impossible to try all the combinations. In addition, we
have another difficulty of the non-uniqueness of the approx-
imated tensors X even if the best rank setting (R1, ..., RM )
is known in advance. The non-uniqueness of approximated
tensor would be caused by the high ill-posedness of the tensor
completion problem.
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In order to tackle the issue of non-uniqueness, the rank
increment strategy can be applied. In the rank increment
strategy, we first obtain X with very low-rank setting. After
that, we re-optimize X with little increased rank setting using
the pre-result as its initial value. We repeat the rank increment
and re-optimization of X until that the error is sufficiently
small.

Finally, we summarize the proposed method in Algorithm 1.
In the step of low-rank tensor factorization, the 6-11th lines
perform the initialization of optimization parameters. Individ-
ual factor matrices U (m) are initialized by three ways: identity
matrices, cosine basis matrices, and random matrices. The core
tensor G is initialized, randomly. The 15-21th lines updates
the optimization parameters U (r)(r ∈ R) and G by using the
ALS method. The 24-30th lines perform the rank increment.
The rank increment has two parts: increment mode selection,
and rank increment. In this algorithm, the increment mode i
is selected based on the mode-residual δm:

δm := ||E ×1 U
(1)T × · · · ×m−1 U

(m−1)T

×m+1 U
(m+1)T × · · · ×M U (M)T ||2F , (24)

where E is a residual tensor. Interpretation of δm can
be regarded as a kind of expected residual improve-
ment when m-th mode is increased. Note that we have
||U (m′)U (m′)TE(m′)||2F = ||U (m′)TE(m′)||2F since U (m′) is
an orthonormal basis matrix. Thus, the tensor-matrix product
of E ×m′ U (m′)T (m 6= m′) banishes the residual related
with the complementary space of U (m′) (m 6= m′). This
means that we do not consider to increase m′-th mode rank
in this moment. Thus, δm is a value of residual considering
to increase only the m-th mode rank with fixing the others.
After deciding the mode, we increase the i-th mode rank based
on rank sequence pi. For example, when we increase the i-th
mode rank one by one, then the rank sequence is set as di =
[1, 2, 3, 4, 5, ..., Ji]. In some other way, the rank sequence can
be freely and efficiently set such as di = [1, 2, 4, 8, 16, ..., Ji]
for skipping some boring steps. After the rank increment, some
corresponding elements of factor matrices and the core tensor
should be updated. If i ∈ K, then we update the cosine basis
matrix by 28-th line. Furthermore, we should expand the size
of G to fit the new rank setting. Note that this expansion does
not affect to XH since we use zero-padding.

IV. EXPERIMENTS

A. Behaviors in optimization

In this section, we show the behaviors of cost function and
recovering signal in optimization process. In this experiment,
we used a color image the size of (256, 256, 3). Note that
a color image is interpreted as the third order tensor since
it has multiple color frames: red, green, and blue. When
we set τ = [32, 32, 1], then MDT outputs the 6th order
tensor the size of (32, 225, 32, 225, 1, 3). In the step of low-
rank tensor factorization, we set K = {1, 3, 5}, R = {6},
and K ∪R = {2, 4} as an example that the three subsets
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Fig. 7: Optimizing the image by rank increment

are not empty. Furthermore, the rank sequences are set by
d1 = d3 = [1, 2, 4, 8, 16, 32], d5 = 1, and d6 = [1, 2, 3].

Figure 6 shows the convergence behaviors of the cost
function and the multilinear tensor ranks. We can observe the
monotonically decreasing/non-increasing of the cost function
which property is theoretically guaranteed in the auxiliary
function method [19], [36]. Red markers put at the points when
some mode-rank was increased.

Figure 7 shows the changes of the image in optimization
process. We can see that the initial low-rank image was blurred
and it became sharper little by little with rank increasing.
Finally, missing elements were successfully recovered.

B. Comparison of recovery performance

Next, we compare the recovery performance of the proposed
method with the state-of-the-art tensor completion algorithms:
low rank tensor completion (LR) [42], total variation method
(TV) [68], low-rank and total variation method (LRTV) [68],
smooth PARAFAC tensor completion with quadratic variation
(SPCQV) [71], and MDT-Tucker [66]. For this comparison,
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Algorithm 1 MDT-COS for tensor completion

1: input: T ∈ RI1×···×JN , Q ∈ {0, 1}I1×···×IN , (τ1, ..., τN ), {d1, ...,dM}, K, R, ε, tol.
2: % Step 1: MDT
3: T H ← H(T ) with (τ1, ..., τN );
4: QH ← H(Q) with (τ1, ..., τN );
5: % Step 2: Low-rank Tensor Factorization

6: Rm ←
{
Jm m 6∈ {K ∪ R}
dm(1) otherwise for m = {1, 2, ...,M};

7: U (m) = IJm for m 6∈ {K ∪ R};
8: U (k) ← BJk,Rk

for k ∈ K;
9: U (r) is initialized by a (Jr, Rr)-random-matrix for each r ∈ R;

10: lm ← 1 for m = {1, 2, ...,M};
11: G ∈ RR1×···×RM is initialized by a random-tensor;
12: XH ← G × {U};
13: f1 ← ||QH ~ (T H −XH)||2F ;
14: repeat
15: Z ←QH ~ T H +QH ~XH ;
16: for r ∈ R do
17: Y ← Z ×1 U

(1)T × · · · ×r−1 U
(r−1)T ×r+1 U

(r+1)T × · · · ×M U (M)T ;
18: U (r) ← Rr leading singular vectors of Y (r);
19: end for
20: G ← Z ×1 U

(1)T × · · · ×M U (M)T ;
21: XH ← G × {U};
22: f2 ← ||QH ~ (T H −XH)||2F ;
23: if |f2 − f1| ≤ tol then
24: E ←QH ~ (T H −XH);
25: i← argmaxm ||E ×1 U

(1)T × · · · ×m−1 U
(m−1)T ×m+1 U

(m+1)T × · · · ×M U (M)T ||2F ;
26: li ← li + 1, and Ri ← min(di(li), Ji);
27: if i ∈ K then
28: U (i) ← BJi,Ri ;
29: end if
30: Expand the size of G to (R1, ..., RM ) with zero-padding;
31: end if
32: f1 ← f2;
33: until f2 ≤ ε
34: % Step 3: Inverse MDT
35: X ← H−1(XH);
36: output: X ;

we used the three video data1. The summary of data property
and parameter settings is given in Table I.

Figure 8 shows the single slice view of resultant videos
recovered by using various tensor completion methods. We
considered three types of missing: 70% random voxel missing,
95% random voxel missing, and random slice missing. LR
only recovered the 70% voxel missing case. TV/LRTV output
smoothed videos that the textures of waves/smokes were
banished. SPCQV nicely recovered almost all cases but it
reduced high frequency components such as edges. Both MDT
based methods seemed to be more accurate that the textures
and edges are almost recovered, and results were sharper than

1smoke1 and smoke2 are obtained from NHK CREATIVE LIBRARY
(https://www.nhk.or.jp/archives/creative/), and these were down-sampled for
the experiments.

others.

Table II shows a quantitative comparison by the peak signal-
to-noise ratio (PSNR) and the frame average of structured
similarity (SSIM) [58]. The highest PSNR ± 0.2 [dB] and
SSIM ± 0.001 were emphasized by bold font. We can see that
both MDT based methods outperformed the other methods in
almost all cases. For only ocean with 70% missing, SPCQV
was the best with wide difference. For smoke1 with 95% miss-
ing, SPCQV was the best but SSIM is very similar to MDT-
COS. For smoke2 with 95% missing, SPCQV was the best
in PSNR, but MDT-COS was the best in SSIM. Comparing
both MDT based methods, the MDT-COS improved or almost
similar to MDT-Tucker for all cases.
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Original Missing LR TV LRTV SPCQV MDT-Tucker MDT-COS(3D view)

Fig. 8: Slice view of recovered videos.

TABLE II: Comparison with PSNR and SSIM

LR [42] TV [68] LRTV [68] SPCQV [71] MDT-Tucker [66] MDT-COS
ocean, 70% voxel missing 26.7/0.805 26.2/0.759 26.2/0.760 33.3/0.950 30.4/0.911 30.5/0.913
ocean, 95% voxel missing 13.0/0.184 20.3/0.289 20.6/0.292 24.1/0.603 24.0/0.668 24.2/0.687
ocean, slice missing 12.2/0.570 30.1/0.904 30.1/0.904 25.9/0.907 30.8/0.939 31.3/0.940
smoke1, 70% voxel missing 27.5/0.723 35.0/0.952 35.1/0.952 34.7/0.912 38.6/0.964 38.7/0.963
smoke1, 95% voxel missing 9.0/0.189 27.7/0.832 27.7/0.831 31.7/0.877 28.3/0.832 30.7/0.874
smoke1, slice missing 9.9/0.412 40.6/0.985 40.6/0.985 37.6/0.965 41.7/0.987 41.7/0.987
smoke2, 70% voxel missing 21.0/0.520 26.0/0.934 26.2/0.934 35.1/0.935 41.3/0.985 41.8/0.986
smoke2, 95% voxel missing 8.5/0.188 19.6/0.765 19.6/0.764 31.6/0.891 26.3/0.835 30.0/0.906
smoke2, slice missing 9.3/0.403 32.7/0.978 32.9/0.978 33.2/0.960 40.6/0.985 40.4/0.984

V. DISCUSSION

A. Related works

Filters guided tensor completion approach for image in-
painting [37], [43], [44], [59] relates the MDT based methods.
The filters guided methods consider the low-rank properties or
non-local similarities in the multiple filtered image features.
The filters used in the method is decided as priors, and
assuming the low-rank structures [59] or non-local similarity
[37], [43], [44] in filtered signals.

On the other hand, when we regard the several factor
matrices (e.g., related to cosine matrices) in the Hankel tensor
as some filters, the other factor matrices and core tensor
would construct the filtered signals. Then, the filtered signals
are modeled by the low-rank tensor decomposition in the

MDT based methods. The MDT based methods explicitly
represent the signal in the embedded space, and could consider
the structure assumptions of filters, coefficients, and their
interactions.

In this way, both methods have some similarities. However,
the MDT based methods would have some other possibilities
such as learning the data specific filters (shift-invariant fea-
tures), and modeling the generative system of signals.

B. Computational issue of MDT based tensor completion

There is a computational problem in the MDT based meth-
ods. This is because that the MDT expands the N -th order
tensor into 2N -th order tensor, and the size of data increases
roughly (

∏N
n=1 τn)-fold. Since τn is a key parameter which

controls the embedding space, it is not good to set τn to
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TABLE I: Data setting

name ocean smoke1 smoke2
size of T (112, 160, 3, 32) (90, 160, 3, 64) (90, 160, 3, 100)
size of T H (8, 105, 8, 153,

1, 3, 8, 25)
(4, 87, 4, 157, 1,
3, 8, 57)

(4, 87, 4, 157, 1,
3, 8, 93)

τ [8, 8, 1, 8] [4, 4, 1, 8] [4, 4, 1, 8]
K {1, 3, 5, 7} {1, 3, 5, 7} {1, 3, 5, 7}
R {2, 4, 6, 8} {2, 4, 6, 8} {2, 4, 6, 8}
d1,d3 [1, 2, 4, 8] [1, 2, 4] [1, 2, 4]
d2 [1, 2, 4, 8, 16,

32, 64, 105]
[1, 2, 4, 8, 16,
32, 64, 87]

[1, 2, 4, 8, 16,
32, 64, 87]

d4 [1, 2, 4, 8, 16,
32, 64, 128,
153]

[1, 2, 4, 8, 16,
32, 64, 128,
157]

[1, 2, 4, 8, 16,
32, 64, 128,
157]

d5 [1] [1] [1]
d6 [1, 2, 3] [1, 2, 3] [1, 2, 3]
d7 [1, 2, 4, 8] [1, 2, 4, 8] [1, 2, 4, 8]
d8 [1, 2, 4, 8, 16,

25]
[1, 2, 4, 8, 16,
32, 57]

[1, 2, 4, 8, 16,
32, 64, 93]

be small. Thus the trade-off relationship exists between the
completion ability and the computational times.

VI. CONCLUSIONS

In this paper, we proposed a new method of multi-way
delay embedding transform based cosine tensor modeling.
The proposed model captures the shift-invariant features in
visual data, and successfully recovered the missing elements in
tensors: random voxels, and slices. The tensor order expansion
by MDT causes the computational bottleneck, then it is still a
open problem and further study is necessary.
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