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Abstract—Positron emission tomography (PET) is an impor-
tant imaging technique to visualize a number of functions in
the brain or human body. For reconstructing PET images
from the sinogram data, an inverse problem has to be solved
using numerical optimizations such as expectation-maximization
(EM)-based methods. However, the standard EM method suffers
from measurement noise added in the sinogram data. In this
paper, we propose a new simultaneous PET image reconstruction
and parts extraction method using constrained non-negative
matrix factorization. In contrast that the many existing methods
reconstruct a single PET image independently, we reconstruct the
time-series of PET images simultaneously from the time-series of
sinograms using non-negative matrix factorization. Furthermore,
we impose the smoothness constraint for the temporal feature,
and the exclusive LASSO-based sparseness constraint for the
spatial feature for robust image reconstruction and physically
meaningful feature extraction.

I. INTRODUCTION

Positron emission tomography (PET) is a powerful tool in
the biomedical analysis of brain functions, body functions,
and drug effects [14], [15]. Some typical applications of PET
imaging are the diagnosis of Alzheimer’s disease by visualiz-
ing the distributions of amyloid beta in the brain [5], and the
diagnosis of cancers by visualizing glucose metabolism in the
body [3].

PET images are obtained by the following procedures: First,
radioactive ligand is injected to a human subject. The ligand
is transmitted and distributed in into tissues, and retained by
the receptors. Thus, the concentration of ligand is affected
by the distributions of the receptors in the human body/brain.
The PET scanner detects the gamma rays from the ligand and
records them as sinograms. It is noteworthy that the sinograms
do not directly show the distributions of the radioactive ligand
in the body/brain, and that it can be shown only after the
computational imaging. Finally, PET images are obtained
from the sinograms using computational image reconstruction
methods such as filtered back-projection [1], [13], [16], and
the expectation-maximization (EM) algorithm [9], [17].

As sinogram data suffer from Poisson noise with a low
signal-to-noise ratio (SNR), it directly affects the reconstructed

PET images. Thus, a robust reconstruction algorithm is impor-
tant. The aim of this study is to propose a new PET image
reconstruction algorithm that is tough on the noise in PET
data. A typical approach to preventing noise is to introduce
prior knowledge for observations or images.

Maximum likelihood estimation based on Poisson noise
is the EM algorithm [9], [17] as mentioned above. Herein,
we consider some additional priors/assumptions based on the
compartment model of pharmacokinetic analysis [7], [8]. In
other words, unlike conventional methods, we reconstruct the
time-series of all PET images at once from the time-series
of sinograms by modeling the smooth time curves of the
ligand concentration. Furthermore, we introduce the spatial
sparseness priors for the parts of PET images by assuming that
the brain image can be separated into several anatomical parts.
For introducing the parts priors, we consider the constrained
non-negative matrix factorization (NMF) model [10], [18] to
represent the PET images. Hence, the matrix of the PET im-
ages is modeled by the multiplication of two matrices: a non-
negative and sparse spatial pattern matrix, and a non-negative
and smooth temporal pattern matrix. We employ the exclusive
LASSO [6] penalty for the spatial sparse pattern matrix,
and the quadratic variation penalty for the temporal smooth
pattern matrix. The optimization problem can be solved by a
multiplicative update algorithm similar to the EM algorithm.
The experimental results show the advantages of the proposed
method for both objectives: noise-robust reconstruction and
parts extraction.

II. THEORY AND METHOD

When a pharmaceutical is injected and atomic collapse
occurs, radioactivity is emitted in two directions angled at
180◦. This radiation is observed as a pair of events by two
detectors of the PET scanner. The observed data accumulating
the event pairs is called a sinogram.

Let V and B be numbers of voxels in the PET image and
sinogram, respectively. We denote a PET image at a time
frame f by df ∈ RV×1, and the sinogram measured by the
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Fig. 1. Concept of NMF of PET image [4]

PET scanner by yf ∈ RB×1. From the physical model of
the PET scanner, a sinogram is obtained by yf = Pdf ,
where P ∈ RB×V is a projection matrix. Considering all
time frames f ∈ {1, 2, ..., F}, we have Y = PD, where
Y = [y1,y2, ...,yF ] ∈ RB×F and D = [d1,d2, ...,dF ] ∈
RV×F are a sinogram matrix and a PET matrix, respectively.
In contrast to classical existing methods that reconstruct df

from yf for each f , our approach reconstructs D from Y
simultaneously.

A. Reconstruction model

The proposed PET image reconstruction model is given by

min
A,X

DKL(Y ,PD) + αJ1(A) + βJ2(X) (1)

s.t. D = AX,A ≥ 0,X ≥ 0.

where A = [a1,a2, ...,aR] ∈ RV×R is a basis matrix for con-
structing spatial patterns, and X = [x1,x2, ...,xR]

T ∈ RR×F

is a basis matrix for constructing time activity curves. From
the compartment model of the dynamics of radioactive ligand
[7], [8], the matrix of PET image D can be assumed as
low rank. Therefore, we consider the number of patterns R
is smaller than min(V, F ). Fig. 1 shows the concept of our
matrix factorization in PET images. Each column of matrix
A represents a spatial pattern that correspond to anatomical
regions exhibiting the same temporal pattern. Each row of
matrix X represents a temporal basis function. The matrix of
PET image D can be considered linear sums and decomposed
into the R image bases.

In Problem (1), DKL(·, ·) is the Kullback–Leibler diver-
gence, as shown in the following formula:

DKL(Y ,PAX)

=
∑
i,j

(
Yij log

Yij

(PAX)ij
− Yij + (PAX)ij

)
.

(2)

The functions J1(A) and J2(X) are the penalty terms used
to enforce the constraints on the solution of (1), and α and β
are their corresponding regularization parameters.

From the compartment model of time activity curves, we
assume that the brain region can be separated into several
compartments based on the clusters of the time activity curves.
Further, we consider that each column vector of spatial matrix

A can be separated into meaningful image patterns. Therefore,
we introduce the following regularizer:

J1(A) =
V∑

v=1

(
R∑

r=1

|avr|

)2

=
A≥0
||A1 ||22, (3)

where aij is the i-th and j-th elements of matrix A, and 1 ∈
{1}R is an R-dimensional vector of ones. We introduce l1-
norm to impose row of matrix A on sparseness and l2-norm
to the combined elements of the same brain regions. We refer
to the regularizer above as exclusive lasso [6]. It is noteworthy
that the exclusive LASSO penalty can be rewritten as the right
hand side of Eq. (3) because of the non-negativity constraint
of A.

To enforce a smooth temporal pattern matrix X , we con-
sider the following penalty:

J2(X) =
R∑

r=1

 F∑
f=1

(xrf − xr(f+1))
2

 = ||LXT ||2F , (4)

where xij is the i-th and j-th elements of matrix X , and matrix
L is the matrix takes the difference of adjacent elements along
the row direction of matrix X . We refer to the regularizer
above as the quadratic variation.

Using the exclusive LASSO and quadratic variation as
regularizers, can write the overall optimization problem:

min
A,X

DKL(Y ,PAX) +
α

2
||A1 ||22 +

β

2
||LXT ||2F (5)

s.t. A ≥ 0,X ≥ 0.

B. Optimization method

Problem (5) can be solved using multiplicative update rules
for NMF [11], which is based on the gradient descent with
the auxiliary function approach [2]. First, we explicitly define
the cost function as follows:

L(A,X)

= DKL(Y ,PAX) +
α

2
tr(ATA11T ) +

β

2
tr(XTXLTL),

(6)

where tr(Z) is the trace of Z. When we consider the standard
gradient decent algorithm such as A← A−ϵ∂L(A,X)

∂A , it could
violate the non-negativity constraint A ≥ 0 with some large
step-size ϵ. By contrast, multiplicative update rules such as
avr ← avrwvr, do not violate the non-negativity constraint
as both the optimization parameter and multiplicative weight
are non-negative, A ≥ 0, W ≥ 0, respectively. The mul-
tiplicative weight should be decided based on the gradient
such that wvr ≤ 1 for

[
∂L(A,X)

∂A

]
vr
≥ 0, and wvr ≥ 1 for[

∂L(A,X)
∂A

]
vr
≤ 0. The following update rules can be used for

minimizing the (6) with each non-negative variable, A or X .
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Fig. 2. Simulation image (left) and its sinogram (right)

1) Update rule for A: The differential of (6) with respect
to A can be obtained as follow:
∂L(A,X)

∂A
= P T1B×FX

T − P T (Y ⊘ PAX)XT + αA11T , (7)

where ⊘ means element-wise division; 1B×F is a (B × F )-
matrix of ones.

Therefore, we can obtain the following update rule:

A← A ◦ {P T (Y ⊘ PAX)XT }
⊘ {P T1B×FX

T + αA11T }, (8)

where ◦ represents the Hadamard (element-wise) product.
2) Update rule for X: The differential of (6) with respect

to X can be obtained as follows:
∂L(A,X)

∂X
=ATP T1B×F −ATP T (Y ⊘ PAX) + βXLTL

=ATP T1B×F −ATP T (Y ⊘ PAX)

+ [βXLTL]+ − [βXLTL]−, (9)

where [·]+ := max(0, ·) and [·]− := |min(0, ·)|. Let X be
the update value when (9) becomes zero. Therefore, we can
obtain the following update rule:

X ←X ◦ {ATP T (Y ⊘ PAX) + [βXLTL]−}
⊘ {ATP T1B×F + [βXLTL]+}. (10)

The PET image is reconstructed by updating the variables
repeatedly using update rules above.

III. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed PET image
reconstruction using the simulation data because true PET
images are necessary. Fig. 2 shows the simulated parts of the
PET image and sinogram data that we used in the experiments.
The artificial sinogram data were created by simulations based
on the compartment model [7], [8] with blood sampling data
clinically measured from a real patient. Initially, the spatio-
temporal distribution of the radio-pharmaceutical ligand in a
virtual brain was simulated using the compartment model; sub-
sequently, the time-series of the sinogram data were artificially
created from the simulated ligand distribution by artificially
measuring the gamma rays emitted from the ligand followed

(a) FBP (left) and EM (right)

(b) EM (all frame)(left) and Proposed (right)

Fig. 3. Examples of reconstruction images applied to each method

Fig. 4. Graph of time variation at a typical voxel in simulation image

with the Poisson distribution. The SNR of the sinogram data
were controlled by varying the artificial measuring process. We
applied three conventional methods and the proposed method
to the temporal series of the sinogram data of various SNRs,
and evaluated the SNR of each reconstructed PET image. One
conventional method is the filtered back-projection [1], [13],
[16]. Another conventional method is using EM algorithm at
each frame. Further, another conventional method is the EM-
based method [12] using basis functions that represent the
temporal change of the time activity curves.

Fig. 3 shows results of the reconstructed images applied for
each method when the SNR of the series of the sinogram data
is 18.43 dB. As shown in Fig. 3, the results of the simulation
images applied with the proposed method has less noise than
the results of the simulation image applied with conventional
methods.

Fig. 5 shows the graph of time variation at a typical voxel
in the simulation image when the SNR of the sinogram series
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Fig. 5. Examples of results of spatial pattern

Fig. 6. Signal-to-noise ratio between constructed image and correct image

is 18.43 dB. As shown in Fig. 4, the time variations of the
FBP and EM algorithm, which are conventional methods,
include some noise and are different from their simulation
data. However, the time variation of the proposed method is
smooth and consistent with its simulation data.

Fig. 5 shows examples of the spatial pattern results. As
shown in Fig. 5, each pattern is meaningful, and represents
the outline of the brain and a partial area.

Fig. 6 shows the SNR graph between a reconstructed
PET image and a true PET image using each method. The
horizontal axis shows the SNR of the sinogram and the vertical
axis shows the SNR of the reconstructed simulation images.
As shown in the graph, the proposed method reconstructed the
simulation images with the highest SNR among the applied
conventional methods.

IV. CONCLUSIONS

In this paper, we proposed a new method that reconstructs
the time-series of all PET images simultaneously from the
time-series of sinograms. Physically meaningful features were
extracted using constrained NMF. The smoothness constraint
for the temporal feature was imposed, as well as the exclusive

LASSO-based constraint for the spatial feature. We experi-
mentally demonstrated that our method could reconstruct PET
images with a higher SNR than the conventional methods.
Further, our method could separate several anatomical parts
with different time variations. Future works entail performing
experiments and evaluations with clinical data.
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