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Abstract—We propose a new method for imputation of missing
values in large scale matrix data based on a low-rank tensor
approximation technique called the block tensor train (TT)
decomposition. Given sparsely observed data points, the proposed
method iteratively computes the soft-thresholded singular value
decomposition (SVD) of the underlying data matrix with missing
values. The SVD of matrices is performed based on a low-rank
block TT decomposition for large scale data matrices with a
low-rank tensor structure. Experimental results on simulated
data demonstrate that the proposed method can estimate a large
amount of missing values accurately compared to a matrix-based
standard method.

I. INTRODUCTION

In this paper, we propose a new method for estimating
missing values in large scale matrix data

Y ∈ RI×J1J2···JN , (1)

by extending standard iterative soft-thresholded singular value
decomposition (SVD) to block tensor train (TT) decompo-
sition as an efficient low-rank data structure. The SVD is
a mathematical technique which factorizes a matrix into the
product of matrices of left singular vectors, right singular vec-
tors, and singular values. In statistics and data mining, the SVD
has been used as a key numerical technique for multivariate
data analyses such as principal component analysis (PCA) and
multiple regression analysis. The SVD has a wide range of
applications in areas such as ecology [4] and recommender
systems [7], [10].

A tensor refers to a multi-dimensional array, which can
be considered as a generalization of vectors and matrices.
Tensor decomposition, like matrix SVD, has been developed
for a wide scope of applications in signal processing, machine
learning, chemometrics, and neuroscience [9]. Traditional ten-
sor decompositions include Candecomp/Parafac (CP) decom-
position and Tucker decomposition; see, e.g., [9]. Modern
tensor decompositions have been developed more recently to
cope with the problem called as the curse-of-dimensionality,
which means an exponential rate of increase in the storage and
computational costs as the dimensionality of tensors increases
[5], [8].

The tensor train (TT) decomposition is one of the modern
tensor decompositions which generalize the matrix SVD to
higher-order (i.e., multi-dimensional) tensors [16]. Modern
tensor decompositions such as the TT decomposition applies
not only to higher order tensors, but also to large scale vectors
and matrices, by transforming the vectors and matrices into

higher-order tensors via a tensorization process [2]. Once the
large scale vectors and matrices have been decomposed by
TT decomposition, algebraic operations such as the matrix-by-
vector multiplication can be performed much efficiently with
logarithmically scaled computational costs [16].

In this work, we focus on the so-called block TT decom-
position, which is one of the TT representations of large
scale matrices. The block TT decomposition has been used
for approximately computing a set of eigenvectors or singular
vectors of large scale matrices [3], [11], [12], [13]. Compared
to the other TT representations for matrices, the block TT
decomposition is suitable for approximating low-rank data
matrices, which is a typical assumption of standard imputation
methods based on matrix SVD.

For SVD of large data matrices with missing values, [15]
proposed an iterative soft-thresholding algorithm. In that al-
gorithm, a convex optimization problem is suggested and
solved by an iterative process consisting of soft-thresholding
SVD and missing data imputation. The SVD plays a crucial
role for estimating missing values of large matrices based on
its low-rank constraints and soft-thresholding regularization.
We remark that other SVD-based missing data imputation
algorithms have been developed in recent decades, see, e.g.,
references in [4], [15].

In this study, we propose an iterative soft-thresholding algo-
rithm based on the block TT decomposition. In the proposed
algorithm, the missing values in large scale matrix data are
estimated based on soft-thresholded SVD, where the set of
either the left or right singular vectors are represented by low-
rank block TT decomposition. Moreover, in order for an effi-
cient computation with sparsely observed data during iteration
process, we propose an efficient procedure for computing a
multiplication of a sparse matrix with a large matrix in block
TT format. In addition, similarly as in [15], we consider that
an estimate of the underlying data matrix Y ∈ RI×J1···JN is
represented as a low-rank matrix using block TT format plus
a sparse matrix format as follows:

Y ≈ Ŷ = X + RΩ,

where RΩ is the sparse matrix of residuals for the observed
data values. By using algebraic operations based on the above
format together with the proposed efficient sparse matrix-by-
block TT multiplication, the proposed block TT-based method
can carry out missing data imputation fast and accurately.
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II. BLOCK TENSOR TRAIN (TT) DECOMPOSITION FOR
SINGULAR VALUE DECOMPOSITION (SVD) OF LARGE

MATRICES

A. Notations

In this work, scalars, vectors, and matrices are denoted by
lowercase (a, b, . . .), lowercase bold (a,b, . . .), and uppercase
bold letters (A,B, . . .). A tensor is a multi-dimensional array
which generalizes vectors and matrices. The size of a tensor
can be written as I1×I2×· · ·×IN , where N is called the order
of the tensor. Tensors are denoted by uppercase calligraphic
letters (A,B, . . .).

For a tensor A ∈ RI1×I2×···×IN , its (i1, i2, . . . , iN )th
element is denoted by (A)i1,i2,...,iN or A(i1, i2, . . . , iN ).
For n = 1, . . . , N , the mode-n unfolding of a tensor
A ∈ RI1×I2×···×IN is a matrix A(n) ≡ [A](n) ∈
RIn×I1···In−1In+1···IN with entries(

A(n)

)
in,kn

= (A)i1,i2,...,iN

and kn = 1 +
∑

m6=n(im − 1)
∏m−1

p=1,p6=n Ip for all im =
1, . . . , Im, m = 1, . . . , N .

The mode-(M, 1) product of two tensors A ∈ RI1×···×IM

and B ∈ RJ1×···×JN with IM = J1 is defined by

A • B ∈ RI1×···×IM−1×J2×···×JN

with entries

(A • B)i1,...,iM−1,j2,...,jN
=

IM∑
iM=1

(A)i1,...,iM (B)iM ,j2,...,jN
.

Note that, in the case that M = N = 2, the mode-(2, 1)
product of two matrices A and B is same to the matrix-
by-matrix multiplication as A • B = AB. It also has the
commutativity as (A•B)•C = A• (B •C). See, e.g., [14] for
further properties.

B. Block TT Decomposition for Matrices

We consider that a large “tall-and-skinny” matrix V ∈
RJ1···JN×RX is reshaped and permuted into a tensor V of size
J1 × · · · × Jn ×RX × Jn+1 × · · · × JN . The block-n tensor
train (TT) decomposition of V is defined by a product of a
series of low-order tensors as

V ≈ V = V1 • V2 • · · · • VN , (2)

where Vm ∈ RRm−1×Jm×Rm (m 6= n) are third-order tensors,
Vn ∈ RRn−1×Jn×RX×Rn is a fourth-order tensor. The tensors
V1, . . . ,VN are called the TT-cores and R1, . . . , RN−1 are
called the TT-ranks. We assume that R0 = RN = 1.

Note that when the large matrix V is decomposed by
the block TT decomposition, the storage cost reduces from
O(JNR) to O(NJR2), where J = max({Jm}) and R =
max({Rm}, RX). See, e.g., [16], for further properties of TT
decomposition and algebraic operations.

Orthogonalization of TT-cores is an important concept for
applications to numerical optimization. A third-order TT-core

Vm ∈ RRm−1×Jm×Rm is called left-orthogonalized if the row
vectors of [Vm](3) ∈ RRm×Rm−1Jm are orthonormal, i.e.,

[Vm](3)[Vm]>(3) = IRm ,

and it is called right-orthogonalized if the row vectors of
[Vm](1) ∈ RRm−1×JmRm are orthonormal [6], [14].

Moreover, we define the partial products of TT-cores of
a block-n TT decomposition in (2), by V<n = V1 • · · · •
Vn−1 ∈ RJ1×···×Jn−1×RX and V>n = Vn+1 • · · · • VN ∈
RRX×Jn+1×···×JN . It has been known that the matrix V ∈
RJ1···JN×RX in (2) can be represented as a product of two
matrices as

V = V 6=nVn, (3)

where V 6=n = [V>n]>(1)⊗IJn⊗[V<n]>(n) ∈ RJ1···JN×Rn−1JnRn

is called the frame matrix and Vn = [Vn]>(3) ∈
RRn−1JnRn×RX is the mode-3 unfolding of the nth TT-core
[11], [14]. It has also been known that the frame matrix
consists of orthonormal columns if the TT-cores V1, . . . ,Vn−1

are left-orthogonalized and the TT-cores Vn+1, . . . ,VN are
right-orthogonalized [11], [14].

C. SVD Based on Block TT Decomposition

In this section, we describe the proposed SVD algorithm
based on block TT decomposition, which will be the most
crucial step in the missing data imputation procedure in the
next section.

The goal is to compute the RX largest singular values and
the corresponding left/right singular vectors of a large matrix
Ŷ ∈ RI×J1J2···JN as

Ŷ ≈ USV>, (4)

where U = [u1, . . . ,uRX
] ∈ RI×RX is the matrix of the left

singular vectors, S = diag(s1, . . . , sRX
) is the diagonal matrix

of the RX largest singular values, and V = [v1, . . . ,vRX
] ∈

RJ1···JN×RX is the matrix of the right singular vectors. In
this study, we consider that V is represented by a block-n TT
decomposition with TT-cores V1, . . . ,VN as in (2).

The above problem of computing the largest singular values
and the corresponding singular vectors can be expressed as the
maximization problem given as [13]

maximize
U,V

trace
(
U>ŶV

)
subject to U>U = V>V = IRX

.
(5)

Suppose that V is in a block-n TT format (2), i.e., the nth
TT-core is of fourth-order, and all the TT-cores except the nth
one are fixed. Due to the expression in (3), the large scale
optimization problem in (5) can be reduced to the smaller
scale problem written as

maximize
U,Vn

trace
(
U>ŶnVn

)
subject to U>U = V>nVn = IRX

,
(6)

where Ŷn = ŶV6=n ∈ RI×Rn−1JnRn .
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The proposed algorithm, bttdSsvdImpute_ALS, itera-
tively updates U, S, and the TT-cores V1, . . . ,VN of V in
(4). One iteration of bttdSsvdImpute_ALS is described
in Algorithm 1. It is based on the alternating least squares
(ALS) approach which updates U or Vn at each iteration
while other components are fixed. Each update is performed
by the power method for computing extreme eigenvectors or
singular vectors based on the small optimization problem in (6)
[17]. After updating Vn, the block-n TT format is converted to
the block-(n+1) or the block-(n−1) TT format by computing
SVD for Vn, which helps to keep TT-cores orthogonalized as
well.

Algorithm 1: One iteration of
bttdSsvdImpute_ALS

Input : A matrix Ŷ ∈ RI×J1J2···JN , U, S, and
{V1, . . . ,VN} in block-1 TT format

Output: Updated U, S, and {V1, . . . ,VN} in block-1
TT format

// Update U

1 Compute Z← ŶV

2 Compute SVD of Z as Z = ŨS̃Ṽ>

3 Update U← Ũ, S← S̃, V1 ← V1Ṽ
4 for n← 1, 2, . . . , N,N − 1, . . . , 1 do

// Update Vn
5 Compute Z← V>6=nŶ

>U

6 Compute SVD of Z as Z = ŨS̃Ṽ>

7 Update [Vn](3) ← Ũ, S← S̃, U← UṼ
8 if n is increasing then

// Convert block-n TT into
block-(n+ 1) TT format

9 Compute SVD of
[Vn]({1,2}×{3,4}) = ŨS̃Ṽ> ∈ RRn−1Jn×RXRn

10 Update [Vn]({1,2}×{3}) ← Ũ,
[Vn+1]({1}×{3,2,4}) ← S̃Ṽ>([Vn+1](1) ⊗ IRX

) ;
11 else

// Convert block-n TT into
block-(n− 1) TT format

12 Compute SVD of
[Vn]({1,3}×{2,4}) = ŨS̃Ṽ> ∈ RRn−1RX×JnRn

13 Update [Vn]({1}×{2,3}) ← Ṽ>,
[Vn−1]({1,2,3}×{4}) ←
(IRX

⊗ [Vn−1]({1,2}×{3}))ŨS̃ ;
14 end

III. AN ITERATIVE SOFT-THRESHOLDING ALGORITHM
FOR MISSING VALUE IMPUTATION

Let Y ∈ RI×J1J2···JN denote the original data matrix and
Ω ⊂ {1, . . . , I} × {1, . . . , J1J2 · · · JN} denote the set of
indices of the observed entries, i.e., (Y)i,k is observed if and
only if (i, k) ∈ Ω. We define a projection to the set of observed

entries by PΩY ∈ RI×J1J2···JN with

(PΩY)i,k =

{
(Y)i,k if (i, k) ∈ Ω

0 if (i, k) /∈ Ω.
(7)

We consider to solve the following nuclear norm regularized
minimization problem:

minimize
X

J (X) =
1

2
‖PΩY − PΩX‖2F + λ ‖X‖∗ , (8)

where ‖A‖F =
√∑

i,j a
2
i,j is the Frobenius norm of a matrix

A, and ‖X‖∗ is called the nuclear norm and is defined by
the sum of the singular values of X. An algorithm called
softImpute has been proposed in [15] and shown to
generate estimates which converge to the minimizer of the
cost function J(X).

In this paper, we present an extension of the softImpute,
which is called bttdSsvdImpute_ALS. The proposed
bttdSsvdImpute_ALS generalizes softImpute to
higher-order tensor structured data by using block TT
decomposition, as described in the previous sections.

The proposed algorithm is described in Algorithm 2. Con-
sider that an estimate of the solution to the problem (8) can
be written by X = USV>, where V is in block-n TT
format with TT-cores {V1, . . . ,VN}. The missing values are
estimated by the corresponding values of X. The estimate of
the underlying data matrix Y can be written as

Ŷ = X + RΩ, (9)

where RΩ is the sparse matrix of residuals defined by

RΩ = PΩY − PΩX.

The iterations in the proposed algorithm is stopped by the
criterion described as follows. At iteration k = 0, 1, 2, . . ., let
X(k) = U(k)S(k)(V(k))> denote the estimated solution to the
minimization problem. The iteration is stopped if the rate of
changes in the singular vectors is sufficiently small as

ratio =
‖U(k−1) −U(k)‖F

max(‖U(k−1)‖F , ‖U(k)‖F )
≤ δX , (10)

where δX > 0 is a predefined tolerance parameter.

IV. EXPERIMENTS

The experiments were conducted using R software version
3.4.3 on a PC with Intel i5-6200 CPU and a memory of 8 GB
running Windows 10 Pro operating system.

A. Simulations

Through simulated experiments, we verify convergence of
the block TT-based proposed method and compare perfor-
mances of the proposed method with the matrix-based standard
method. Details about the simulated data are described in each
subsection.
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Algorithm 2: bttdSsvdImpute_ALS
Input : Y ∈ RI×J1J2···JN , an integer RX , a

parameter δX > 0
Output: An approximate solution, X = USV>, to the

minimization problem (8), where
U ∈ RI×RX , S = diag(s1, . . . , sRX

), and
V ≈ {V1, . . . ,VN} ∈ RJ1···JN×RX in block-1
TT format

1 Initialize U← 0, S← diag(1, . . . , 1), TT-cores
{V1, . . . ,VN} for block-1 TT format with entries
randomly drawn from standard normal distribution.

2 Left-orthogonalize V2, . . . ,VN . Orthogonalize V1 so
that [V1](3)[V1]>(3) = IRX

.
3 RΩ ← PΩY − PΩX. Define Ŷ ≡ X + RΩ

4 iter ← 0, ratio← 1
5 while iter ≤ max iter and ratio ≥ δX do
6 Update U, S, {V1, . . . ,VN} by Algorithm 1.
7 Update RΩ ← PΩY − PΩX and Ŷ.
8 Compute ratio by (10).
9 end

1) Sparsely Observed Random Matrices: We consider a
data matrix Y of size J×JN , which is considered as mode-1
unfolding of an order-(N + 1) tensor Y ∈ RJ×J×···×J , i.e.,

Y ≡ Y(1) ∈ RJ×JN

.

We assume that only the super-diagonal elements of the tensor
Y are observed, so that the index set of the observed values can
be written as Ω = { (j, k) ∈ {1, . . . , J} × {1, . . . , JN}

∣∣ k =

1 +
∑N

n=1(j − 1)Jn−1, 1 ≤ j ≤ J}. The observed values of
Y were randomly generated from a uniform distribution on
[0, 1]. For instance, N = 2 implies that Y is a matrix of size
J × J2, and the (j, j + (j− 1)J)th elements are the observed
elements as

Y =


y1,1 · · · ∗ · · · · · · · · · ∗
∗ · · · y2,2+J · · · · · · · · · ∗
...

...
. . .

...
∗ · · · ∗ · · · · · · · · · yJ,J2

 ∈ RJ×J2

.

In the simulation, the rank of the solution matrix X were
changed by RX = 1, 2, . . . , 5. The initial values for the TT-
ranks of the right singular vectors, V, were set at Rn = 1 for
all n = 1, . . . , N − 1. The TT-cores were initialized randomly
by the standard normal distribution and then the right singular
vectors were orthogonalized. We defined a maximal TT-rank
by Rmax = 10, i.e., RX ≤ 10. With λ = 0, we estimated X
and calculated the cost function value by

J (X) =
1

2
‖PΩY − PΩX‖2F .

The tolerance parameter for stopping criterion was set by
δX = 10−6.

Fig. 1 shows the convergence of the cost function of the
solution matrix estimated by the proposed method. We can

0 1000 2000 3000 4000 5000

0
1

2
3

4

Convergence of ALS method

Iteration

C
os

t f
un

ct
io

n

l

l

l

l l l
l l

l l

l R_X = 1
R_X = 2
R_X = 3
R_X = 4
R_X = 5

Fig. 1. Convergence in the cost function value of the proposed method. The
data is the simulated sparsely observed random matrices of size 20× 20N .

see that with the rank RX = 1, the convergence speed is
relatively slow compared to the other cases of RX = 2, 3, 4, 5.
This is because the rank RX larger than 1 allows TT-ranks
to adaptively change during iteration process, while the rank
RX = 1 does not. Note that the TT-ranks were initialized
by Rn = 1 for all n, which means that, even if the TT-
ranks did not change at Rn = 1 for the case of RX = 1,
the sparsely observed values was estimated accurately with
δX = 10−6. This is a reasonable result because there exists
a rank-1 matrix which perfectly fit with the observed values
y = [y1,1, . . . , yJ,J2 ]>, e.g., X = [y,y, · · · ,y] = y1>, where
1 is a vector of ones, and the vector 1 has the TT-ranks Rn = 1
for all n.

2) Low-rank Matrices: In this section, low-rank data ma-
trices Y were randomly generated by using block TT decom-
position as

Y = U0S0V
>
0 ,

where U0 ∈ RI×RY were generated from standard normal dis-
tribution and then orthogonalized, S0 = diag(s1, . . . , sRY

) ∈
RRY ×RY were generated from uniform [0.5, 1] distribution,
and TT-cores of block-1 TT tensor V0 ≈ V1 • · · · • VN ∈
RI×RY were randomly generated by standard normal dis-
tribution and then left-orthogonalized. The TT-ranks of V0

were set at Rn = 2, and other parameters were set at
N ∈ {2, 3}, I = 100, Jn ∈ {4, 8, 12, 16, 20}, RY = RX =
4, δX = 0.0005, λ = 0. The observed values were randomly
sampled, and the number of observed values, |Ω|, were set at

|Ω| = ρIJ1 · · · JN .

The proportion was set by ρ ∈ {0.2, 0.4} to simulate sparsely
observed data matrices. The simulation can be conducted for
other values of ρ in future works.

We compared performances of the block TT-based proposed
method with the matrix-based method. In the matrix-based
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TABLE I
SUMMARY STATISTICS FOR THE DIFFERENCE OF RRMSE VALUES

BETWEEN THE BLOCK TT-BASED METHOD AND THE MATRIX-BASED
METHOD, FOR THE CASE THAT N = 2, ρ = 0.2, AND

Jn = 4, 8, 12, 16, 20.

N = 2, ρ = 0.2 Jn
4 8 12 16 20

Min. -0.365 -0.466 -1.179 -0.393 -0.926
1st Qu. -0.329 -0.042 -0.049 -0.032 -0.021
Median -0.006 0.705 -0.009 -0.009 -0.015
Mean 0.014 0.626 -0.247 -0.088 0.031
3rd Qu. 0.148 0.943 -0.005 -0.009 -0.002
Max. 0.622 1.991 0.008 0.000 1.118

method, the right singular vectors V are estimated in full
matrix format. In the case that N = 1, the block TT-based
method and the matrix based method are identical. As a
performance measure, the relative root mean squared error
(RRMSE) was calculated by

RRMSE =
‖X−Y‖F
‖Y‖F

.

The simulation results for N = 2 are illustrated in Tables I
and II. Each value in the tables show the difference of the
RRMSE values of the block TT based-method and the matrix
based-method, i.e.,

RRMSE(blockTT )−RRMSE(matrix).

The negative value implies that the block TT-based method
achieved higher accuracy in the missing data imputation. In
Tables I and II, we can see that the higher the size Jn became,
the block TT-based method achieved higher accuracy.

The simulation results for N = 3 are illustrated in Tables III
and IV. We did not run the simulation for large proportion
ρ ≥ 0.5 and large size Jn ≥ 16 because the number of
observed data values increased largely so that computational
costs became relatively huge. In the tables, we can see that
the proposed block TT-based method was more accurate for
relatively large sizes Jn. Moreover, compared to the case of
lower order N = 2, the proposed block TT-based method
achieved higher accuracy for the case of higher order N = 3,
which implies higher efficiency for higher order tensor struc-
tured data. In addition, it is remarkable that even for the cases
of high order, large data sizes, and large proportion of missing
data (e.g., ρ ≤ 0.2), the low-rank block TT-based method
could recover missing data successfully.

V. CONCLUSIONS AND DISCUSSION

In this work, we proposed a novel method for missing
data imputation based on block TT decomposition. Since the
block TT decomposition computes SVD of large matrices
approximately, the proposed method successfully extended the
existing method on low-rank matrix data to low-rank tensor
structured data, while potentially inheriting favorable proper-
ties such as global convergence. Compared to the matrix-based
method, the proposed method could achieve higher accuracy
in the cases of higher order (N > 1) tensor structured data in
the simulated experiments.

TABLE II
SUMMARY STATISTICS FOR THE DIFFERENCE OF RRMSE VALUES

BETWEEN THE BLOCK TT-BASED METHOD AND THE MATRIX-BASED
METHOD, FOR THE CASE THAT N = 2, ρ = 0.4, AND

Jn = 4, 8, 12, 16, 20.

N = 2, ρ = 0.4 Jn
4 8 12 16 20

Min. -1.415 -0.00020 -0.00102 -0.0018 -0.0023
1st Qu. -0.175 -0.00001 0.00006 -0.0014 -0.0022
Median -0.110 0.00002 0.00043 -0.0014 -0.0016
Mean -0.326 0.00094 0.00023 -0.0012 -0.0013
3rd Qu. -0.007 0.00006 0.00066 -0.0008 -0.0004
Max. 0.079 0.00484 0.00105 -0.0007 -0.0001

TABLE III
SUMMARY STATISTICS FOR THE DIFFERENCE OF RRMSE VALUES

BETWEEN THE BLOCK TT-BASED METHOD AND THE MATRIX-BASED
METHOD, FOR THE CASE THAT N = 3, ρ = 0.2, AND

Jn = 4, 8, 12, 16, 20.

N = 3, ρ = 0.2 Jn
4 8 12 16 20

Min. -1.580 -0.0314 -0.0268 -0.030 -0.023
1st Qu. -0.020 -0.0208 -0.0136 -0.020 -0.023
Median 0.018 -0.0173 -0.0110 -0.020 -0.022
Mean 0.177 -0.0184 -0.0133 -0.020 -0.020
3rd Qu. 0.339 -0.0166 -0.0088 -0.017 -0.020
Max. 2.130 -0.0057 -0.0064 -0.013 -0.012

On the other hand, [1] and [13] have proposed SVD algo-
rithms for large scale matrices based on TT decompositions.
However, existing SVD methods based on TT decompositions
assume that the large scale matrices are in the TT matrix
format, whereas in this work the large scale matrices are in
the low-rank matrix plus sparse format.

There are several challenges for missing data imputation
based on (block) TT decompositions. (i) Alternating least
squares (ALS)-based algorithms often show slow convergence
speed, especially for high dimensional data problems. Modi-
fied ALS algorithm can be an alternative, but its computational
cost is usually higher than that of ALS algorithms [13]. (ii) The
computational cost highly depends on the number of observed
data values, which requires more efficient way of computing
sparse matrix-by-tensor multiplication. In this sense, recently
arising new trends such as randomized methods [1] can be a
new direction.

TABLE IV
SUMMARY STATISTICS FOR THE DIFFERENCE OF RRMSE VALUES

BETWEEN THE BLOCK TT-BASED METHOD AND THE MATRIX-BASED
METHOD, FOR THE CASE THAT N = 3, ρ = 0.4, AND Jn = 4, 8, 12.

N = 3, ρ = 0.4 Jn
4 8 12

Min. -0.0113 -0.0021 -0.0139
1st Qu. -0.0017 -0.0009 -0.0069
Median -0.0005 -0.0004 -0.0043
Mean -0.0015 -0.0005 -0.0057
3rd Qu. 0.0026 0.0001 -0.0029
Max. 0.0035 0.0006 -0.0004

1342

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



REFERENCES

[1] K. Batselier, W. Yu, L. Daniel, and N. Wong. Computing low-rank ap-
proximations of large-scale matrices with the Tensor Network randomized
SVD. arXiv:1707.07803, 2017.

[2] O. Debals and L. De Lathauwer. Stochastic and deterministic tensorization
for blind signal separation. In E. Vincent, A. Yeredor, Z. Koldovsky, and
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