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Abstract—This paper proposes performance evaluation of
phase-only correlation (POC) functions using signal-to-noise ratio
(SNR) and peak-to correlation energy (PCE) from the viewpoint
of correlation filters. Correlation functions can be thought as
the output from the correlation filters. Maximizing SNR leads to
matched filters, whereas maximizing PCE results in the inverse
filters. We also derive the general expressions of SNR and PCE
of the POC functions based on directional statistics. SNR is
expressed by simple fractional function of circular variance. PCE
is simply given by squared peak value of the POC functions, and
its expectation can be expressed in terms of circular variance.

I. INTRODUCTION

Phase-only correlation (POC) functions have been widely
used for evaluating similarity between two signals. They have
been applied for in many fields, such as image registration
[1]–[3], pattern recognition [4], [5], motion estimation [6],
[7], and so on. In order to clarify the effects of stochas-
tic phase-spectrum differences on the POC functions, our
group proposed statistical analysis of the POC functions
with stochastic phase-spectrum differences [8]–[10]. In Ref.
[9], we proposed statistical analysis method for the POC
functions with stochastic phase-spectrum differences based on
directional statistics. We assume phase-spectrum differences
between two signals to be random variables with some circular
probability distributions.

On the other hand, correlation functions can be thought as
the output from the correlation filters. In order to evaluate
performance of the correlation filters, signal-to-noise ratio
(SNR) and peak-to-correlation energy (PCE) are commonly
used for correlation performance measures [5]. SNR is the
ratio of the square of average correlation peak to its variance.
PCE is a peak sharpness measure of correlation functions.
We have considered that these performance measures are
applicable for also the POC functions.

This paper proposes performance evaluation of the POC
functions using SNR and PCE from the viewpoint of correla-
tion filters. We derive the general expressions of SNR and PCE
of the POC functions as correlation performance measures.
SNR is expressed by simple fractional function of circular
variance. PCE is simply given by squared peak value of the
POC function, and its expectation can be expressed in terms
of circular variance.
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Fig. 1. Basic idea for signal detection problem by linear filter.

II. CORRELATION PERFORMANCE MEASURES BASED ON

CORRELATION FILTERS

This section gives preliminaries about correlation filters.
SNR and PCE are commonly used correlation performance
measures [5].

A. Correlation Filters

In the field of pattern recognition, correlation methods are
commonly used for detecting desired signals from received
signal.

Let x(t) and y(t) denote the reference signal and the
received signal, respectively. We assume that the received
signal y(t) is corrupted by additive noise v(t), and we judge
the absence or presence of the reference signal x(t) from the
received signal y(n). We have the following two hypotheses:

H0 : y(t) = v(t) (1)

H1 : y(t) = x(t) + v(t) (2)

where H0 and H1 denote the absence and presence of the
reference signal, respectively. The noise v(t) is assumed to be
random process with zero mean and power spectral density
(PSD) Pv(f). We select between the two hypotheses from the
received signal y(t) with knowledge of x(t) and Pv(f). Basic
idea for this signal detection problem by linear filter is shown
in Fig. 1. The filter output c(t) is given by

c(t) =

∫ ∞

−∞
h(τ)y(t− τ)dτ (3)

where h(t) is the impulse response of the linear filter. From the
output of the linear filter c(t), we have to select the hypothesis
yielding the lowest error probability.
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B. Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR) of the filter output c(t) is
defined as follows:

SNR =
|E[cmax]|2

Var[cmax]
(4)

where cmax is the maximum value of c(t). We assume that
the filter output c(t) has its highest peak at the origin t = 0
without loss of generality, that is, cmax = c(0). Under this
assumption, SNR in Eq. (4) is represented by

SNR =
|E[c(0)]|2

Var[c(0)]

=
|
∫
H(f)X(f)df |2∫
|H(f)|2Pv(f)df

(5)

where X(f) and H(f) are Fourier transforms of x(t) and h(t),
respectively. For given X(f) and Pv(f), SNR is maximized
when we choose the linear filter H(f) as follows:

H(f) = α
X∗(f)

Pv(f)
(6)

where α is any complex constant. Especially, when the input
noise v(t) is white noise, its PSD Pv(f) is constant with
respect to the frequency f , which yields

H(f) = αX∗(f) (7)

which is known as the matched filter since H(f) is propotional
to X∗(f) or equivalently h(t) is propotional to x(−t).

C. Peak-to-Correlation Energy (PCE)

Peak-to-Correlation Energy (PCE) is a tractable correlation
performance measure of the peak sharpness defined as

PCE =
|c(0)|2∫
|c(t)|2dt

=
|
∫
X(f)H(f)df |2∫
|X(f)H(f)|2df

(8)

Since maximal PCE is obtained when the correlation output
is a delta function, the filter that maximizes PCE is

H(f) =
1

X(f)
(9)

which is known as the inverse filter.

III. PHASE-ONLY CORRELATION (POC) FUNCTIONS

This section gives preliminaries about the POC filters. From
this section, we deal with discrete-time signals.

A. Definition

Consider complex discrete-time signals x(n) and y(n) of
length N . The discrete Fourier transforms of x(n) and y(n)
are given by X(k) = |X(k)|ejθk and Y (k) = |Y (k)|ejϕk ,
respectively, where θk and ϕk are phase spectra of x(n)
and y(n), respectively. The POC function r(m) between two
signals x(n) and y(n) is defined by the inverse discrete Fourier
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Fig. 2. POC functions r(m) for various circular variances v of phase spectrum
differences.

transform of normalized cross-power spectrum between two
signals x(n) and y(n) as follows:

r(m) = IDFT

[
X(k)Y ∗(k)

|X(k)Y ∗(k)|

]
=

1

N

N−1∑
k=0

ejαkW−mk
N (10)

(m = 0, 1, · · · , N − 1)

where WN = exp(−j2π/N) is the twiddle factor, and αk =
θk − ϕk are phase-spectrum differences.

B. Properties

If two input signals are completely equal, phase spectra
of two signals are equal, that is, αk = θk − ϕk = 0.
In this case, the POC function r(m) is the delta function
δ(m). This property has been exploited in many matching
techniques. However, in practical signal processing scene, it
is quite unrealistic that the two input signals are equal. In
most practical case, input signals are corrupted by noise, which
causes corrupted phase spectra.

Figure 2 shows simple numerical examples of the POC
functions for stochastic phase-spectrum differences. We set
length of signals to be N = 32. We assume that phase-
spectrum differences αk’s follow wrapped Gaussian distri-
bution [10] with mean direction 0 and circular variance v,
and calculate POC functions in Eq. (10) for circular vari-
ance v = 0, 0.2, 0.4, 0.6, 0.8, 1. We can observe that |r(0)|
decreases as the circular variance v increases. On the other
hand, |r(m ̸= 0)| tend to increase as the circular variance
v increases. In order to clarify the statistical properties of
POC functions, we have to give some theoretical evidence for
these experimental results of the POC functions with stochastic
phase-spectrum differences. Behavior of peak value |r(0)| can
be described by expectation of the POC function r(m). On the
other hand, energy in sidelobe |r(m ̸= 0)| can be described
by variance of the POC function r(m).

IV. STATISTICAL ANALYSIS OF THE POC FUNCTIONS

BASED ON DIRECTIONAL STATISTICS

We proposed statistical analysis of phase-only correlation
functions with stochastic phase-spectrum differences based on
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Fig. 3. Expectation |E[r(0)]| and variance Var[r(m)] of POC function r(m)
versus circular variance v.

directional statistics [9].
We derived the expectation and variance of the POC

functions in terms of circular variance of phase-spectrum
differences as follows:

Theorem 1: For i.i.d. stochastic phase-spectrum differ-
ences αk’s, the expectation and variance of POC functions
r(m) (m = 0, 1, · · · , N − 1) are given by

E[r(m)] = Aδ(m)

= (1− v)ejµδ(m) (11)

Var[r(m)] =
1

N
(1− |A|2)

=
1

N

(
1− (1− v)2

)
(12)

where A, µ and v are the first-order trigonometric moment,
mean direction and circular variance of phase-spectrum dif-
ferences αk’s, respectively.
From Eqs. (11) and (12), the expectation |E[r(0)]| and vari-
ance Var[r(m)] versus circular variance v can be shown as Fig.
3. As circular variance v increases from 0 to 1, expectation
|E[r(0)]| monotonically decreases from 1 to 0, and variance
Var[r(m)] monotonically increases from 0 to 1. Furthermore,
Eqs. (11) and (12) show that the expectation E[r(m)] does
not depend on signal length N , while the variance Var[r(m)]
is in inversely proportion to signal length N .

V. CORRELATION PERFORMANCE MEASURES FOR POC
FUNCTIONS BASED ON DIRECTIONAL STATISTICS

In order to evaluate correlation performance of the POC
functions, we newly derive the general expressions for cor-
relation performance measures of the POC functions. In this
section, the POC function r(m) is assumed to have its peak
at the origin m = 0, without loss of generality.

A. Signal-to-Noise Ratio (SNR)

Following the general definition of SNR, as correlation
performance measures [5], we have defined SNR of the POC
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Fig. 4. SNR of the POC function r(m) versus circular variance v.

function by

SNR =
|E[r(0)]|2

Var[r(0)]
. (13)

Substituting Eqs. (11) and (12) into Eq. (13), we have general
expressions for SNR of the POC functions as follows:

SNR = N
|A|2

1− |A|2
. (0 ≤ |A| ≤ 1) (14)

On the other hand, based on directional statistics, we have
derived general expressions for the expectation and variance
of the POC function r(m) in terms of circular variance v.
From Eqs. (11) and (12), SNR in Eq. (14) can be expressed
by simple fractional functions of circular variance v as follows:

SNR = N
(1− v)2

1− (1− v)2
. (0 ≤ v ≤ 1) (15)

Figure 4 shows SNR of the POC function r(m) versus circular
variance v. We can show from Eq. (15) and Fig. 4 that SNR
monotonically decreases from +∞ to 0 as circular variance v
increases from 0 to 1. Furthermore, we can show that SNR is
in proportion to signal length N .

B. Peak-to-Correlation Energy (PCE)

Following the general definition of PCE, as correlation
performance measures [5], we have defined PCE of the POC
function r(m) by

PCE =
|r(0)|2∑N−1

m=0 |r(m)|2
. (16)

It has been known that POC functions r(m) always satisfy

N−1∑
m=0

|r(m)|2 = 1 (17)

which can be proved by Parseval’s theorem. Therefore, PCE
of the POC function r(m) is simply given by

PCE = |r(0)|2. (18)
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Fig. 5. Expectation of PCE of the POC function r(m) versus circular variance
v.

We can show from Eq. (18) that peak sharpness of the POC
functions can be simply evaluated from only the squared peak
value.

We next derive the expectation of PCE. Substituting Eq.
(10) into Eq. (18), PCE of the POC function r(m) can be
expressed by

PCE =
1

N2

N−1∑
k=0

N−1∑
l=0

ejαke−jαl . (19)

By taking the expectation of Eq. (19), the expectation of PCE
is given by

E[PCE] = E

[
1

N2

N−1∑
k=0

N−1∑
l=0

ejαke−jαl

]

=
1

N2

N−1∑
k=0

N−1∑
l=0

E[ejαke−jαl ]. (20)

In the right side of Eq. (20), E[ejαke−jαl ] is given by

E[ejαke−jαl ] =

{
1 (k = l)
|A|2 (k ̸= l)

(21)

Substituting Eq. (21) into Eq. (20), we have general expres-
sions for the expectation of PCE of the POC functions as
follows:

E[PCE] =
1

N
+

(
1− 1

N

)
|A|2. (0 ≤ |A| ≤ 1) (22)

On the other hand, by using the relationship v = 1 − |A|,
E[PCE] can be expressed in terms of the circular variance v
as follows:

E[PCE] =
1

N
+

(
1− 1

N

)
(1− v)2. (0 ≤ v ≤ 1) (23)

Figure 5 shows the expectation of PCE of the POC function
r(m) versus circular variance v. We can show from Eq. (23)
and Fig. 5 that E[PCE] monotonically decreases from 1 to
1/N as circular variance v increases from 0 to 1. For large
N , E[PCE] can be approximated by E[PCE] ≈ (1 − v)2.
Furthermore, it should be noted that 1/N ≤ E[PCE] ≤ 1,
which gives the minimum and maximum values of E[PCE].

VI. CONCLUSIONS

In this paper, we proposed performance evaluation of the
POC functions using SNR and PCE from the viewpoint of
correlation filters. We derived the general expressions of SNR
and PCE of the POC functions as correlation performance
measures. SNR is expressed by simple fractional function of
circular variance. PCE is simply given by squared peak value
of the POC function, and its expectation is expressed in terms
of circular variance.

These correlation performance measures are quite important
in signal matching techniques based on POC functions, since
they would give us useful criteria for discriminant between
peak and sidelobe of the POC functions. In order to theoreti-
cally determine the optimal threshold value, we have to clarify
the probability distributions of the POC functions based on
directional statistics as our future works.
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