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Abstract—IIR (Infinite Impulse Response) filter design prob-
lem is a non-linear optimization problem. Because PSO (Particle
Swarm Optimization) can enumerate solution candidates quickly,
it is known as an effective method for such a problem. However,
PSO has a drawback that tends to indicate a premature conver-
gence due to a strong directivity. In this paper, PSS (Problem
Space Stretch)-PSO is verified to avoid the local minimum
stagnation. Several design examples are shown to present the
effectiveness of the method.

I. INTRODUCTION

IIR filter is a discrete time signal processing circuit used
in various applications including a communication and a
measurement. IIR filters can realize a sharp cutoff response
with a lower filter order than FIR filters. However, IIR filters
require a stability assurance and thus many local solutions
exist in the design problem space.

Some methods were proposed for solving the such problem
[1],[2]. In [1], SDP (Semidefinite programming) based method
was used for solving the problem. In [2], Remez algorithm
based method was used for the complex Chebyshev approxi-
mation design.

On the other hand, several heuristic methods were proposed
[3]−[5]. Among them, PSO can enumerate solution candidates
quickly. Therefore, PSO is effective for the IIR filter design
problem where many local solutions exist in the problem
space. However, PSO has a drawback that tends to indicate
a premature convergence due to the strong directivity. There-
fore, it is required to avoid the local minimum stagnation.
Some methods were developed to avoid the local minimum
stagnation [7]−[9].

In [7], the particle relocation method was proposed based
on multiple swarms. When one of swarms stagnated, the
relocation space is determined by the global bests of three
swarms. The space determined from multiple local solutions
may contain different local solutions from them. Then, all
particles of the stagnation swarm are relocated within the
convex hull spanned by the global bests of multiple swarms.

In [8], a penalty function is added to the objective function
when the stagnation occurred. The objective function value
of the local solution is temporally increased by the penalty
function. As a result, each particle is prompted to escape from
the stagnation point.

In [9], PSS-PSO stretches a problem space of the objective
function when the stagnation occurred. Then, the gain of the
desired response is changed. Although only the gain parameter

of the frequency response is considered to be changed, PSO
does not selectively update only one element of parameter
vector. Therefore, the another parameters also change simul-
taneously and the local minimum stagnation can be avoided.

In this study, a search mechanism of PSS-PSO is verified
from a point of view of the poles and the zeros of the designed
filters. Several design examples are shown to present the
effectiveness of the method.

II. DESIGN PROBLEM

The frequency response of IIR filter is formulated in the
following equation,

H(ω) = a0

N∏
n=1

(1− zne
−jω)

M∏
m=1

(1− pme−jω)

(1)

where a0 is a filter coefficient, zn are zero points, pm are
poles, N is a numerator order and M is a denominator order.
The design problem of IIR filter is expressed in a minimax
criterion as following,

min
x

max
ω∈Ω

|D(ω)−H(ω)|, (2)

where x = [a0, z1, · · · zN , p1, · · · , pM ]T is the design param-
eter vector, Ω is the approximate frequency band, ω is the
normalized angular frequency, D(ω) is the desired response.
The design problem is to determinate x so as to minimize the
maximum error between D(ω) and H(ω) on the approximate
frequency band.

III. IIR FILTER DESIGN USING PARTICLE SWARM
OPTIMIZATION

PSO is one of the multi-point search algorithms. PSO is
consisted of multiple particles, each particle is specified by a
location x and a speed v. The updating procedure of the i-th
particle is formulated as,

xk+1
i = xk

i + vk+1
i , (3)

vk+1
i = wvk

i + c1r1(pbest
k
i − xk

i )

+c2r2(gbest
k − xk

i ), (4)

where pbesti is the best location of the i-th particle, gbest
is the best location among all particle locations up to the k-
th iterations, K is the number of iterations, r1 and r2 are
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Fig. 1. Penalty Function (R=0.89)

uniform random numbers in the interval of [0, 1], w is the
inertia weight parameter, c1 is the weight parameter toward
the pbesti and c2 is the weight parameter toward the gbest.
PSO has the strong directivity to the local solution. When
PSO is applied to the IIR filter design problem, the objective
function is defined as,

F (x) = max
ω∈Ω

|D(ω)−H(ω)|+ ϕ(pmax), (5)

where ϕ(pmax) is a penalty function for assuring the stability
[7].

The stability condition of the IIR filter is that all poles exist
within the unit circle on z-plane. When using the minimax cri-
terion, the error of the approximate band tends to concentrate
in the transition band. Then, the magnitude ripple occurs in the
transition band, and the poles tend to approach the unit circle.
In ϕ(pmax), a maximum pole radius is limited as following,

ϕ(pmax) =

{
p2max, pmax ≥ R
0, otherwise , (6)

pmax = max
m=1,··· ,M

|pm|, (7)

where R is the prescribed maximum pole radius. The penalty
function of R = 0.89 is shown in the Fig.1.

IV. IIR FILTER DESIGN USING PSS-PSO

PSS-PSO [9] was proposed to avoid the local minimum
stagnation. PSS-PSO stretches the problem space of the ob-
jective function when the stagnate occurred. As a result, the
objective function value of the stagnation point is changed, the
local minimum stagnation can be avoided. When PSS-PSO is
applied to the IIR filter design problem, the objective function
is defined as,

F (λ,x) = max
ω∈Ω

|λD(ω)−H(ω)|+ ϕ(pmax), (8)

where λ is an uniform random numbers in the interval of
[1 − γ, 1 + γ], γ is a scalar. If λ < 1, the problem space is
stretched, and if λ > 1, it is shrunk. When the gain of D(ω)
is multiplied by λ, it can be considered that just a0 of H(ω) is
multiplied by λ. Because PSO does not selectively update only
one element of x, zn and pm also change simultaneously. As a
result, diversification is promoted when the search is repeated.

TABLE I
DEDIGN CONDITIONS

P N M R τ fp fs
Ex.1 80 6 4 0.88 4.0 0.20 0.30
Ex.2 90 8 6 0.89 6.0 0.20 0.27
Ex.3 140 12 8 0.93 10.0 0.20 0.24
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Fig. 2. Verification of γ of Ex.1

V. VERIFICATION

Design performance of PSS-PSO was verified in [9]. How-
ever, a search mechanism of PSS-PSO is unknown. For the
verification of search mechanism, the variation of design
parameters between before and after of the multiplication of
λ to D(ω), and then the variation of the value of objective
functions were investigated.

Three design examples are attempted for the verification.
The desired frequency response is defined as,

D(ω) =

{
e−jωτ , 0 ≤ ω ≤ 2πfp
0, 2πfs ≤ ω ≤ π

, (9)

where P is a number of particle, τ is a group delay, fp is a
pass band edge frequency, fs is a stop band edge frequency.
Design conditions are shown Table I.

A. Parameters of PSO

The number of iterations was set to K = 50, 000, the
number of trials was set to T = 50, and number of frequency
divisions was set to S = 300. Initial value of a0 was set to
[−0.5, 0.5], zn were set to [−1.5, 1.5] and pm were set to
[−R,R], w = 0.5, c1 = 1.0, c2 = 2.6. In general, PSO sets
c1 and c2 to similar values. As a result, the diversification and
the intensification of search are balanced. When c2 is set to
be larger than c1, the intensification ability becomes stronger
and the frequencies of the stagnations increase. Because many
local solutions are enumerated by the stagnation avoidance,
many local solutions are also enumerated because PSS-PSO
can avoid stagnation.
γ was verified under design conditions in Table I. The

objective function values for γ are shown from Fig.2 to Fig.4.
From those results, we set γ to 0.2.

1366

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1.0

γ

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Fig. 3. Verification of γ of Ex.2

B. Verification result

The verification results are shown from Table II to Table
VII. H indicates that the element of parameter is changed
higher than the average value. L indicates that the ele-
ment of parameter is changed lower than the average value.
Improvement is the number of improvements of the objective
function value. Worse is the number of worses of the objec-
tive function value. Sum is the total number of Improvement
and Worse. It is assumed to be a global search when the zn
or the pm are H . It is assumed to be a local search when the
zn and the pm are L.

From the results of Table II, Table IV and Table VI, in
the case of HHH , HHL, it can be confirmed that the
number of worses tends to be larger than the number of
improvements. These results show that the global search found
for solutions having different design parameters before and
after the stagnation avoidance. On the other hand, it can be
confirmed that the number of improvements are larger than
the number of worses in the local search, i.e., the search
of LLL. In addition, the frequencies of local searches is
extremely large. From the results of Table III, Table V and
Table VII, it can be confirmed that the best solution is solution
of improvements in the local search. This fact reveals that a
coarse-to-fine search is carried out stochastically in PSS-PSO.

The allocation of poles of the best solution are shown from
Fig.5 to Fig.7. Those allocations reveal that the stability is
assured in the filters designed. The magnitude response are
shown from Fig.8 to Fig.10. From those results, it can be
confirmed that the excessive ripple was suppressed in the
transition band. The updating curves are shown from Fig.11 to
Fig.13. When the stagnation occurred, the values of objective
function change temporally because of the problem space
stretch. That is, large variations in those curves correspond
to the occurrence of the stagnation avoidance. Thus, the ef-
fectiveness of PSS-PSO is also confirmed even in the updating
curves.
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Fig. 4. Verification of γ of Ex.3

TABLE II
VERIFICATION RESULTS (EX.1)

a0 zn pm Improvement Worse Sum
H H H 1522 1713 3235
H H L 1255 1477 2732
H L H 590 470 1060
H L L 904 835 1739
L H H 527 349 876
L H L 906 671 1577
L L H 1958 1132 3090
L L L 9488 5885 15373

VI. CONCLUSIONS

In this paper, the search mechanism of PSS-PSO was veri-
fied from the viewpoint of design parameter vector variation.
From verification results, it was shown that PSS-PSO achieves
the good design by the stochastic coarse-to-fine search.
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TABLE III
THE BEST SOLUTION OF OBJECTIVE FUNCTION VALUE

FOUND FOR EACH COMBINATION (EX.1)

a0 zn pm Improvement Worse
H H H 0.026302 0.026718
H H L 0.026316 0.026766
H L H 0.026585 0.027136
H L L 0.026354 0.026840
L H H 0.026328 0.026411
L H L 0.026270 0.026370
L L H 0.026339 0.026451
L L L 0.026264 0.026292

TABLE IV
VERIFICATION RESULTS (EX.2)

a0 zn pm Improvement Worse Sum
H H H 1563 2044 3607
H H L 1374 1912 3286
H L H 667 677 1344
H L L 1308 1299 2607
L H H 756 556 1312
L H L 1279 1045 2324
L L H 1866 976 2842
L L L 10191 5157 15348

TABLE V
THE BEST SOLUTION OF OBJECTIVE FUNCTION VALUE

FOUND FOR EACH COMBINATION (EX.2)

a0 zn pm Improvement Worse
H H H 0.023726 0.024438
H H L 0.022791 0.023958
H L H 0.024316 0.024637
H L L 0.022487 0.024067
L H H 0.023952 0.024403
L H L 0.022591 0.022570
L L H 0.022678 0.023273
L L L 0.022444 0.023021

TABLE VI
VERIFICATION RESULTS (EX.3)

a0 zn pm Improvement Worse Sum
H H H 1487 2040 3527
H H L 1591 2153 3744
H L H 961 913 1874
H L L 1573 1643 3216
L H H 891 695 1586
L H L 1715 1613 3328
L L H 2206 1267 3473
L L L 11063 5514 16577

TABLE VII
THE BEST SOLUTION OF OBJECTIVE FUNCTION VALUE

FOUND FOR EACH COMBINATION(EX.3)

a0 zn pm Improvement Worse
H H H 0.023914 0.025280
H H L 0.024593 0.025461
H L H 0.023921 0.024119
H L L 0.022904 0.024068
L H H 0.024876 0.026397
L H L 0.023516 0.026758
L L H 0.023675 0.024622
L L L 0.022752 0.023059
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Fig. 8. Updating Curve of Ex.1
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Fig. 11. Magnitude response of Ex.1
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Fig. 12. Magnitude response of Ex.2
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Fig. 13. Magnitude response of Ex.3
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