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Abstract—This paper proposes a novel variable structure
for linear phase frequency-selective maximally flat FIR digital
filters. The proposed method expresses the transfer function by
cascading and paralleling the 2nd order variable subfilters. The
multiplier of the subfilter requires very few multiplication in
update compared with the conventional maximally flat variable
FIR digital filters. Hence, the proposed structure can change the
frequency response immediately.

I. INTRODUCTION

Finite impulse response (FIR) digital filters are widely used
because they are absolutely stable and can realize linear phase
response [1]–[7]．Linear phase FIR digital filters don’t cause
any phase distortion, so that they are important in commu-
nication systems, image processing, and so on. Maximally
flat (MF) FIR digital filters are well known by ripple-less
frequency response which can realize high accuracy extraction
of input signals in the passband [3]–[7]. These filters are
designed to satisfy flatness constraints such that the frequency
response and its first- to high-order derivatives at several
frequencies must be exactly same as those of ideal frequency
response. Here, we refer to the highest differential order in the
flatness constraint for a frequency as the flatness degree at the
frequency.

Recently, variable FIR digital filters have been investigated
to adjust the frequency response without re-designing [8]–
[10]. In connection with this, Wang et al. proposed a general
structure for MF FIR digital filters [11]–[13]. Wang’s struc-
ture connects subfilters in parallel as many as the flatness
constraints, and has a variable multiplier to approximate
various ideal frequency responses. Yoshida et al. modified the
general structure for MF FIR digital filters by expressing the
coefficients with convolution of subcoefficients [14]. Yoshida’s
structure can reduce the number of multiplier, adder, and
delay even though it can approximate various ideal frequency
responses as same as Wang’s structure. Both structures can
realize various frequency responses without re-design by
changing the ideal frequency response and the frequency
where flatness constraints are imposed. Hence, they can be
regarded as structures for variable MF FIR digital filters.
However, it is difficult to update the filter coefficients of these
structures immediately because the filter coefficients are given
by many multiplication. Furthermore, these structures premise
that the flatness degree at each frequency is fixed. When the
structures realize band-pass characteristics and the passband
center frequency is changed, their frequency response has a
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κ = 6 and µ = 8 (wrong)

κ = 7 and µ = 7 (appropriate)

Fig. 1. The frequency response of band-pass MF FIR digital filters with wrong
parameters and appropriate parameters

peak in transition band caused by unsuitable flatness degree
as shown in Fig. 1 [5]. Such peak is undesired because
they would amplify noise. To avoid it, it is important that
a variable structure for frequency selective MF FIR digital
filters can adjust the flatness degree at the stopband candidate
frequencies, ω = 0 and ω = π.

Hence, this paper proposes a novel variable structure for
linear-phase frequency selective MF FIR digital filters. By
limiting the filter characteristics among low-pass, band-pass
and high-pass ones, the proposed structure can reduce the
number of multiplication in coefficients update. To realize such
structure, we introduce a variable subfilter whose coefficients
are given by simple formula and zeros in z domain can be
adjusted. Then, the transfer function for linear-phase band-pass
MF FIR digital filters are rewritten in cascading and paralleling
such variable subfilters. Since controlling the number of zeros
at ω = 0 and ω = π is exactly same as controlling
the flatness degree at them [3], the proposed structure can
avoid a peak in transition band when the passband center
frequency is updated. Furthermore, it is also shown that the
proposed transfer function can realize not only the band-pass
characteristics but low-pass and high-pass ones by adjusting
subfilters.
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II. PROPOSED STRUCTURE

In general, the transfer function of linear phase FIR digital
filter is given by

H(z) =
N∑

n=0

h(n)z−n

= z−N/2H0(ω) (1)

where N , h(n) and H0(ω) are filter order, filter coefficients
and zero phase transfer function, respectively. Linear phase
band-pass MF FIR digital filters are designed to satisfy the
following flatness constraints

dlH0(ω)

dωl

∣∣∣∣
ω=ω0

=
dl1

dωl

∣∣∣∣
ω=ω0

, l = 0, 1, · · ·, L (2)

dlH0(ω)

dωl

∣∣∣∣
ω=π

= 0, l = 0, 1, · · ·, 2κ− 1 (3)

dlH0(ω)

dωl

∣∣∣∣
ω=0

= 0, l = 0, 1, · · ·, 2µ− 1, (4)

where ω0 is the passband center frequency. L, κ and µ are
the flatness degree parameters at each frequency and are an
integer, 1/2 an integer and 1/2 an integer, respectively. The
relation among N , L, κ and µ are

N = 2(L+ κ+ µ). (5)

In this paper, we assume that N and L are fixed, so that κ+µ
is not changed.

Zero phase transfer function H0(ω) satisfying (2) is given
by [5]

H0(ω) = (1− x)κ(1 + x)µQκ,µ
L (6)

Qκ,µ
L (x) =

L∑
n=0

qκ,µn (x0)(x− x0)
n (7)

qκ,µn (x) = (−2)n(1− x0)
κ(1 + x0)

µP−κ−n,−µ−n
n (x0)

Pα,β
n (x) = 2−n

n∑
k=0

(
α+ n

k

)(
β + n

n− k

)
· (x− 1)n−k(x+ 1)k, (8)

where Pα,β
n (x) is called Jacobi polynomial and

x = − cosω

x0 = − cosω0(
α

n

)
=

α(α− 1) · · · (α− n+ 1)

n!
.

Since qκ,µn (x) is expressed in a closed-form function, H0(x)
can change the passband center frequency ω0. When ω0 is
changed, it is important to avoid a peak as shown in Fig. 1
by adjusting the flatness degree parameter κ and µ. However,
updating of qκ,µn (x0) becomes time consuming according to
the value of n. Furthermore, Wang’s and Yoshida’s general
structures don’t assume to change the value of κ and µ.

To solve this problem, the proposed method express the
transfer function by cascading and paralleling the following
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Fig. 2. The structure for the 2nd order variable FIR digital filters

variable subfilters. The proposed subfilter is the 2nd order FIR
digital filter as shown in Fig. 2. The transfer function of the
proposed subfilter is defined as

Gα
n(z, ωz, ωs) = a(0)− a(1)z−1 + a(2)z−2. (9)

The coefficients a(·) is defined with n ≥ 0 as

a(0) = gαn(ωs) (10)
a(1) = −2 cosωza(1) (11)
a(2) = a(1), (12)

and with n = −1 as

a(0) =
√
gα0 (ωs) (13)

a(1) = − cosωza(1) (14)
a(2) = 0, (15)

where

gαn(ωs) =
−α− n

n+ 1

1

2(cosω0 − cosωs)
. (16)

From above equations, it is clear that ωz controls zero(s) of
Gα

n(z, ωz, ωs). Multipliers are defined by α, n, ωz and ωs.
To express H(z) by using Gα

n(z, ωz, ωs), the proposed
method rewrite H0(ω) as

H0(ω) =
( −x+ 1

−x0 + 1

)κ( −x− 1

−x0 − 1

)µ

Q̃κ,µ
L (17)

Q̃κ,µ
L (x0) =

L∑
n=0

n∑
k=0

rκk (π)r
µ
n−k(0)(−x+ x0)

n, (18)

where

rαk (ωs) =

(
−α

k

)
(−x0 − cos(ωs))

−k. (19)

Furthermore, Q̃κ,µ
L (x0) can be transformed as same as the

passband function in Yoshida’s structure [14],

Q̃κ,µ
L (x0) =

L∑
n=0

rκn(π)(−x+ x0)
n

·
{ L−n∑

k=0

rµk (0)(−x+ x0)
k
}
. (20)

From above equations, this paper proposes H(z) as

H(z) = Sκ(z, π)Sµ(z, 0)Q̃
κ,µ
L (z) (21)

Q̃κ,µ
L (z) =

L∑
n=0

Rκ
n(z, π)

{
L−n∑
k=0

Rµ
k (z, 0)

}
, (22)
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(a) Filter structure
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(b) Structure of Sκ(z, π)Sµ(z, 0)
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(c) Structure of Q̃κ,µ
L (z)

Fig. 3. The proposed structure for linear phase frequency-selective variable
MF FIR digital filters

where

Sα(z, ωs) =


1, α = 1

G−1
⌊α⌋−⌈α⌉(z, ωs, ωs)

·
(∏⌈ωs⌉−1

i=1 G−1
0 (z, ωs, ωs)

)
, others

(23)

Rα
n(z, ωs) =

{
1, n = 1∏n−1

i=0 Gα
i (z, ω0, ωs), others.

(24)

In (23), ⌊·⌋ and ⌈·⌉ are floor function and ceiling function,
respectively.

Hence, we achieve a novel variable structure for linear phase
band-pass MF FIR digital filters based on variable subfilter
Gα

n(z, ωz, ωs) as shown in Fig. 3. Since Sκ(z, π), Sµ(z, 0) and
Q̃κ,µ

L (z) are composed by variable subfilters, each multiplier
of the proposed structure requires 2 or 4 multiplication and 2
division regardless of the filter order. Hence, we can adjust κ, µ
and ω0 immediately. Moreover, even though (21) is a transfer
function for band-pass filters, it can be applied to low-pass
and high-pass filters. To design low-pass filters, we set µ = 0
and ω0 = 0. On the other hand, To design high-pass filters,
we set κ = 0 and ω0 = π.

III. EXAMPLE

In this section, we show the frequency response of the 26th
order variable MF FIR digital filters. The parameters of the
proposed structure are passband center frequency ω0 and the
flatness parameter L, κ and µ. In this example, L is fixed as
L = 3 and then we have κ + µ = 10. Other parameters, ω0,
κ and µ are set as table I. Note that κ and µ are adjusted to
avoid a peak in transition band.

TABLE I
PARAMETERS IN EXAMPLE

ω0 0 π/4 π/2 3π/4 π
κ 10 9 5 1 0
µ 0 1 5 9 10
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Fig. 4. The frequency response of the proposed structure

Figure 4 shows the frequency response of the proposed
structure. From Fig.4, it is clear that the proposed structure
can change the frequency response without a peak in transition
band.

IV. CONCLUSION

In this paper, a novel variable structure for linear phase
frequency-selective MF FIR digital filters was proposed. To
achieve the structure, the 2nd order variable subfilter was
introduced. The multiplier of the subfilter requires very few
multiplication in update and control zero(s) in z domain. Then,
we show that the transfer function of the linear phase band-
pass MF FIR digital filters can be transformed by cascading
and paralleling the subfilters. Hence, the proposed structure
can adjust the center frequency and the flatness degree at the
stopband candidate frequencies immediately. Moreover, the
proposed structure can be applied to low-pass and high-pass
filters by adjusting them. Through example, it was confirmed
that the proposed structure can change the frequency response
without a peak in transition band.
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