
Learning Priors for Adversarial Autoencoders
Hui-Po Wang, Wei-Jan Ko and Wen-Hsiao Peng

Department of Computer Science National Chiao Tung University, Hsinchu, Taiwan

Abstract—Most deep latent factor models choose simple priors
for simplicity, tractability or not knowing what prior to use.
Recent studies show that the choice of the prior may have a
profound effect on the expressiveness of the model, especially
when its generative network has limited capacity. In this paper,
we propose to learn a proper prior from data for adversarial
autoencoders (AAEs). We introduce the notion of code generators
to transform manually selected simple priors into ones that can
better characterize the data distribution. Experimental results
show that the proposed model can generate better image quality
and learn better disentangled representations than AAEs in
both supervised and unsupervised settings. Lastly, we present its
ability to do cross-domain translation in a text-to-image synthesis
task.

I. INTRODUCTION

Deep latent factor models, such as variational autoencoders
(VAEs) and adversarial autoencoders (AAEs), are becoming
increasingly popular in various tasks, such as image generation
[1], unsupervised clustering [2, 3], and cross-domain transla-
tion [4]. These models involve specifying a prior distribution
over latent variables and defining a deep generative network
(i.e., the decoder) that maps latent variables to data space
in stochastic or deterministic fashion. Training such deep
models usually requires learning a recognition network (i.e.,
the encoder) regularized by the prior.

Traditionally, a simple prior, such as the standard normal
distribution [5], is used for tractability, simplicity, or not
knowing what prior to use. It is hoped that this simple prior
will be transformed somewhere in the deep generative network
into a form suitable for characterizing the data distribution.
While this might hold true when the generative network has
enough capacity, applying the standard normal prior often
results in over-regularized models with only few active latent
dimensions [6].

Some recent works [7, 8, 9] suggest that the choice of
the prior may have a profound impact on the expressiveness
of the model. As an example, in learning the VAE with a
simple encoder and decoder, [7] conjecture that multimodal
priors can achieve a higher variational lower bound on the
data log-likelihood than is possible with the standard normal
prior. [9] confirm the truth of this conjecture by showing that
their multimodal prior, a mixture of the variational posteriors,
consistently outperforms simple priors on a number of datasets
in terms of maximizing the data log-likelihood. Taking one
step further, [8] learn a tree-structured nonparametric Bayesian
prior for capturing the hierarchy of semantics presented in the
data. All these priors are learned under the VAE framework
following the principle of maximum likelihood.

Along a similar line of thinking, we propose in this paper
the notion of code generators for learning a prior from data
for AAE. The objective is to learn a code generator network to
transform a simple prior into one that, together with the gen-
erative network, can better characterize the data distribution.
To this end, we generalize the framework of AAE in several
significant ways:

• We replace the simple prior with a learned prior by
training the code generator to output latent variables that
will minimize an adversarial loss in data space.

• We employ a learned similarity metric [1] in place of
the default squared error in data space for training the
autoencoder.

• We maximize the mutual information between part of
the code generator input and the decoder output for
supervised and unsupervised training using a variational
technique introduced in InfoGAN [10].

Extensive experiments confirm its effectiveness of gener-
ating better quality images and learning better disentangled
representations than AAE in both supervised and unsupervised
settings, particularly on complicated datasets. In addition, to
the best of our knowledge, this is one of the first few works
that attempt to introduce a learned prior for AAE.

The remainder of this paper is organized as follows: Sec-
tion II reviews the background and related works. Section III
presents the implementation details and the training process
of the proposed code generator. Section IV compares its per-
formance with AAE in image generation and disentanglement
tasks. Lastly, we conclude this paper with remarks on future
work.

II. BACKGROUND AND RELATED WORK

A latent factor model is a probabilistic model for describing
the relationship between a set of latent and visible variables.
The model is usually specified by a prior distribution p(z) over
the latent variables z and a conditional distribution p(x|z; θ) of
the visible variables x given the latent variables z. The model
parameters θ are often learned by maximizing the marginal
log-likelihood of the data log p(x; θ).

Variational Autoencoders (VAEs). To improve the model’s
expressiveness, it is common to make deep the conventional
latent factor models by introducing a neural network to
p(x|z; θ). One celebrated example is VAE [5], which assumes
the following prior p(z) and p(x|z; θ):

p(z) ∼ N (z; 0, I)

p(x|z; θ) ∼ N (x; o(z; θ), σ2I)
(1)

1388

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

Fig. 1: The relations of our work with prior arts.

where the mean o(z; θ) is modeled by the output of a neural
network with parameters θ. In this case, the marginal p(x; θ)
becomes intractable; the model is thus trained by maximizing
the log evidence lower-bound (ELBO):

L(φ, θ) = Eq(z|x;φ) log p(x|z; θ)−KL(q(z|x;φ) ‖ p(z)) (2)

where q(z|x;φ) is the variational density, implemented by
another neural network with parameter φ, to approximate the
posterior p(z|x; θ). When regarding q(z|x;φ) as an (stochas-
tic) encoder and p(z|x; θ) as a (stochastic) decoder, Equation
(2) bears an interpretation of training an autoencoder with the
latent code z regularized by the prior p(z) through the KL-
divergence.

Adversarial Autoencoders (AAEs). Motivated by the ob-
servation that VAE is largely limited by the Gaussian prior
assumption, i.e., p(z) ∼ N (z; 0, I), [3] relax this constraint
by allowing p(z) to be any distribution. Apparently, the KL-
divergence becomes intractable when p(z) is arbitrary. They
thus replace the the KL-divergence with an adversarial loss
imposed on the encoder output, requiring that the latent code
z produced by the encoder should have an aggregated posterior
distribution1 the same as the prior p(z).

Non-parametric Variational Autoencoders (Non-
parametric VAEs). While AAE allows the prior to be
arbitrary, how to select a prior that can best characterize the
data distribution remains an open issue. [8] make an attempt
to learn a non-parametric prior based on the nested Chinese

1The aggregated posterior distribution is defined as q(z) =∫
q(z|x;φ)pd(x)dx, where pd(x) denotes the empirical distribution

of the training data

restaurant process for VAEs. Learning is achieved by fitting
it to the aggregated posterior distribution, which amounts to
maximization of ELBO. The result induces a hierarchical
structure of semantic concepts in latent space.

Variational Mixture of Posteriors (VampPrior). The
VampPrior is a new type of prior for the VAE. It consists
of a mixture of the variational posteriors conditioned on a set
of learned pseudo-inputs {xk}. In symbol, this prior is given
by

p(z) =
1

K

K∑
k=1

q(z|xk;φ) (3)

Its multimodal nature and coupling with the posterior achieve
superiority over many other simple priors in terms of training
complexity and expressiveness.

Inspired by these learned priors [8, 9] for VAE, we propose
in this paper the notion of code generator to learn a proper
prior from data for AAE. The relations of our work with these
prior arts are illustrated in Fig. 1.

III. LEARNING THE PRIOR

In this paper, we propose to learn the prior from data instead
of specifying it arbitrarily. Built on the foundation of AAE, we
introduce a neural network (which we call the code generator)
to transform the manually-specified prior into a better form.
Fig. 2 presents its role in the overall architecture, and contrasts
the architectural difference relative to AAE.

Because this code generator itself has to be learned, we
need an objective function to shape the distribution at its
output. Normally, we wish to find a prior that, together
with the decoder in Fig. 3, would lead to a distribution that

1389

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a) AAE (b) AAE + code generator

Fig. 2: The architecture of AAE without (left) and with (right)
the code generator.

Fig. 3: The overall training architecture.

maximizes the data likelihood. We are however faced with two
challenges. First, the output of the code generator could be
any distribution, which makes the likelihood function and its
variational lower bound intractable. Second, the decoder has
to be learned simultaneously, which creates a moving target
for the code generator.

To address the first challenge, we propose to impose an
adversarial loss on the output of the decoder when training the
code generator. That is, we want the code generator to produce
a prior that minimizes the adversarial loss at the decoder
output. Using the example in Fig. 4, the decoder should
generate images with a distribution that in principle matches
the empirical distribution of real images in the training data,
when driven by the output samples from the code generator.
In symbols, this is to minimize

LIGAN = log(DI(x)) + log(1−DI(dec(zc))), (4)

where zc = CG(z) is the output of the code generator CG
driven by a noise sample z ∼ p(z), DI is the discriminator in
image space, and dec(zc) is the output of the decoder driven
by zc.

To address the second challenge, we propose to alternate
training of the code generator and the decoder/encoder until

(a) (b)

Fig. 4: Alternation of training phases: (a) the AAE phase and
(b) the prior improvement phase.

convergence. In one phase, termed the prior improvement
phase. we update the code generator with the loss function
in Eq. (4), by fixing the encoder2. In the other phase, termed
the AAE phase, we fix the code generator and update the
autoencoder following the training procedure of AAE. Specifi-
cally, the encoder output has to be regularized by the following
adversarial loss:

LCGAN = log(DC(zc)) + log(1−DC(enc(x))), (5)

where zc = CG(z) is the output of the code generator,
enc(x) is the encoder output given the input x, and DC is
the discriminator in latent code space.

Because the decoder will be updated in both phases, the con-
vergence of the decoder relies on consistent training objectives
during the alternation of training phases. It is however noticed
that the widely used pixel-wise squared error criterion in the
AAE phase tends to produce blurry decoded images. This
obviously conflicts with the adversarial objective in the prior
improvement phase, which wants the decoder to produce sharp
images. Inspired by the notion of learning similarity metrics
[1], we change the criterion of minimizing squared error in
pixel domain to be in feature domain. Specifically, in the AAE
phase, we require that a decoded image dec(enc(x)) should
minimize the squared error ‖F(dec(enc(x))) − F(x)‖2 with
the input image x in feature domain, where F(·) denotes the
feature representation of an image (usually the output of the
last convolutional layer) in the image discriminator DI . With
this, the decoder would be driven consistently in both phases
towards producing decoded images that resemble closely real
images.

Moreover, when it is necessary to generate images condi-
tionally on an input variable s to the code generator, as will
be seen in our supervised and unsupervised learning tasks, we
introduce the variational learning technique in InfoGAN [10]
to maximize the mutual information I(s; dec(zc)) between the
variable s and the generated image. This way we explicitly
force the code generate to pick up the information carried by
the variable s when generating the latent code.

IV. EXPERIMENTS

We compare the performance of our model with AAE,
which adopts manually-specified priors, in image generation
and disentanglement tasks. In Section IV-A, we show that
using the same encoder and decoder architecture, our model
with code generator and similarity metric learning can generate
higher quality images. In Section IV-B, we demonstrate that
our model can better learn disentangled representations in both
supervised and unsupervised settings. In Section IV-C, we
present an application of our model to text-to-image synthesis.

A. Image Generation
Latent factor models with the priors learned from data rather

than specified arbitrarily should ideally better characterize the
data distribution. To verify this, we compare the performance

2Supposedly, the decoder needs to be fixed in this phase. It is however
found beneficial in terms of convergence to update also the decoder.

1390

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

Algorithm 1 Training algorithm for our method.

θenc, θdec, θCG, θDI
, θDC

, θQ ←− Initialize network
parameters
Repeat (for each epochs Ei)

Repeat (for each mini-batch xj)
// AAE phase
z ∼ p(z)
If meaningful code pattern s exists then

zc ← CG(z, s)
Else

zc ← CG(z)
End If

LCGAN ← log(DC(zc)) + log(1−DC(enc(x)))
xrec ← dec(enc(x))
Lrec ← 1

N ‖F(x)−F(xrec)‖2

// Update network parameters for AAE phase
θDC

← θDC
−∇θDC

(LCGAN)

θenc ← θenc −∇θenc
(−LCGAN + Lrec)

θdec ← θdec −∇θdec(λ ∗ Lrec)

// Prior improvement phase
z ∼ p(z)
If conditional variable s exists then

zc ← CG(z, s)
Else

zc ← CG(z)
End If

xnoise ← dec(zc)
xrec ← dec(enc(xj))
LIGAN ← log(DI(xj))+log(1−DI(xnoise))+log(1−

DI(xrec))

// Update network parameters for prior improvement
phase

θDI
← θDI

−∇θDI
(LIGAN)

If conditional variable s exists then
θdec ← θdec −∇θdec(−LIGAN + I(s; dec(zc))
θQ ← θQ −∇θQ(I(s; dec(zc)))

Else
θdec ← θdec −∇θdec(−LIGAN)

End If
Until all mini-batches are seen

Until terminate

(a) Our model + 8-D latent code (b) AAE + 8-D latent code

(c) Our model + 64-D latent code (d) AAE + 64-D latent code

Fig. 5: Images generated by our model and AAE trained on
MNIST (upper) and CIFAR-10 (lower).

(a) Our model + 100-D latent code (b) AAE + 100-D latent code

(c) Our model + 2000-D latent
code

(d) AAE + 2000-D latent code

Fig. 6: Images generated by our model and AAE trained on
MNIST (upper) and CIFAR-10 (lower). In this experiment, the
latent code dimension is increased significantly to 64-D and
2000-D for MNIST and CIFAR-10, respectively. For AAE,
the re-parameterization trick is applied to the output of the
encoder as suggested in [3].

1391

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

TABLE I: Inception score of different generative models on
CIFAR-10

Method Inception Score
DCGAN 6.16
WGAN-GP 7.86
BEGAN 5.62
DFM 7.72
Our method w/ a learned prior 6.52
Our method w/ a Gaussian prior 6.02

of our model with AAE [3], in terms of image generation.
In this experiment, the autoencoder in our model is trained
based on minimizing the squared reconstruction error in
feature domain (i.e., the learned similarity metric), whereas
by convention, AAE is trained by minimizing the squared
error in data domain. For a fair comparison, we require that
both models have access to the same encoder and decoder
networks, with the network parameters trained to optimize
their respective priors.

Fig. 5 displays side-by-side images generated from these
models when trained on MNIST and CIFAR-10 datasets. They
are produced by drawing samples from the priors and passing
them through their respective decoders. In this experiment,
two observations are immediate. First, our model can generate
sharper images than AAE on both datasets. Second, AAE
experiences problems in reconstructing visually-plausible im-
ages on the more complicated CIFAR-10. These highlight the
advantage of optimizing with respect to a learned similarity
metric and learning the code generator through an adversarial
loss, which in general produces subjectively sharper images.
Table I compares the inception score of our model with some
other generative models on CIFAR-10. Caution must be exer-
cised in interpreting these numbers as they implement different
generative networks. With the current implementation, our
model achieves a comparable score to other generative models.
Moreover, the use of a learned prior does not improve further
on generation quality.

Another advantage of our model is its ability to have
better adaptability in high-dimensional latent code space.
Fig. 6 presents images generated by the two models when
the dimension of the latent code is increased significantly
from 8 to 100 on MNIST, and from 64 to 2000 on CIFAR-
10. As compared to Fig. 5, it is seen that the increase in
code dimension has little impact on our model, but exerts
a strong influence on AAE. In the present case, AAE can
hardly produce recognizable images, particularly on CIFAR-
10, even after the re-parameterization trick has been applied to
the output of the encoder as suggested in [3]. This emphasizes
the importance of having a prior that can adapt automatically
to changes in code space and data.

B. Disentangled Representation

Learning disentangled representation is desirable in many
applications. It refers generally to learning a representation
whose individual dimensions can capture independent factors
of variation in the data. To demonstrate the ability of our model

Fig. 7: Supervised learning architecture with the code gener-
ator.

to learn disentangled representations and the merits of GAN-
driven priors, we repeat the disentanglement tasks in [3], and
compare its performance with AAE.

1) Supervised Learning : This session presents experimen-
tal results of a network architecture that incorporates the
GAN-driven prior in learning supervisedly to disentangle the
label information of images from the remaining information.
Its block diagram is depicted in Fig. 7, where the code
generator takes as input the label information of an image
and an independent Gaussian noise to impose a conditional
latent code distribution on the image representation. This
has an interpretation of associating each class of images
with a code space governed by some distribution conditioned
on the label. In particular, this conditional distribution itself
needs to be learned from data using the GAN-based training
procedure presented in Fig. 7. To enforce the use of the label
information for image generation, we additionally apply the
variational technique proposed in [10] to maximize the mutual
information between the label and the generated image. At test
time, image generation for a particular class is achieved by
inputting the class label and a Gaussian noise to the code
generator and then passing the resulting code through the
decoder. Particularly, to see the sole contribution from the
learned prior, the AAE baseline also adopts a learned similarity
metric and this same mutual information maximization; that
is, the only difference relative to our model is the use of a
manually-specified prior governed by a one-hot vector and a
standard normal noise.

Fig. 8 displays images generated by our model and AAE.
Both models adopt a 10-D one-hot vector to specify the label
and a 54-D Gaussian to generate the noise. To be fair, the
output of our code generator has an identical dimension (i.e.,
64) to the latent prior of AAE. Each row of Fig. 8 corresponds
to images generated by varying the label while fixing the noise.
Likewise, each column shows images that share the same label
yet with varied noise.

On MNIST and SVHN, both models work well in separating
the label information from the remaining (style) information.
This is evidenced from the observation that along each row, the
main digit changes with the label input regardless of the noise
variable, and that along each column, the style varies without
changing the main digit. On CIFAR-10, the two models behave
differently. While both produce visually plausible images, ours
generate more semantically discernible images that match the
labels.

Fig. 9 visualizes the output of the code generator with the

1392

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a) Our model (b) AAE

(c) Our model (d) AAE

(e) Our model (f) AAE

Fig. 8: Images generated by the proposed model (a)(c)(e)
and AAE (b)(d)(f) trained on MNIST, SVHN and CIFAR-10
datasets in the supervised setting. Each column of images have
the same label/class information but varied Gaussian noise. On
the other hand, each row of images have the same Gaussian
noise but varied label/class variables.

t-distributed stochastic neighbor embedding (t-SNE). It is seen
that the code generator learns a distinct conditional distribution
for each class of images. It is believed that the more apparent
inter-class distinction reflects the more difficult it is for the
decoder to generate images of different classes. Moreover, the
elliptic shape of the intra-class distributions in CIFAR-10 may
be ascribed to the higher intra-class variability.

2) Unsupervised Learning: This session presents experi-
mental results of our model in learning unsupervisedly to
disentangle the label information of images from the remaining
information. As illustrated in Fig. 10, this is achieved by
dividing the input to the code generator into two parts, one
driven by an uniform categorial distribution and the other
by a Gaussian. The categorical distribution encodes our prior

belief about data clusters. The number of distinct values over
which it is defined specifies the presumed number of clusters
in the data. The Gaussian serves to explain the data variability
within each cluster. These two distributions are further mingled
together by the fully connected layers in the code generator, to
form a prior that is best suited for explaining the data. Again,
the AAE baseline differs by the use of a manually-specified
prior.

At test time, image generation is done similarly to the
supervised case. We start by sampling the categorical and
Gaussian distributions, followed by feeding the samples into
the code generator and then onwards to the decoder. In this
experiment, the categorical distribution is defined over 10-
D one-hot vectors, which denote the label variable, and the
Gaussian is 90-D. As in the supervised setting, after the model
is trained, we alter the label variable or the Gaussian noise one
at a time to verify whether the model has learned to cluster
images. We expect that a good model should generate images
of the same digit or of the same class when the Gaussian part
is altered while the label part remains fixed.

The results in Fig. 11 show that on MNIST, both our model
and AAE successfully learn to disentangle the label from
the remaining information. Based on the same presentation
order as in the supervised setting, we see that each column of
images (which correspond to the same label variable) do show
images of the same digit. This is however not the case on the
more complicated SVHN and CIFAR-10 datasets: each column
could mix images from different digits/classes. Nevertheless,
both models have a tendency to cluster images with similar
background colors.

Fig. 12 further visualizes the latent code distributions at
the output of the code generator and the encoder. Several
observations can be made. First, the encoder is regularized well
to produce an aggregated posterior distribution similar to that
at the code generator output. Second, the code generator learns
distinct conditional distributions according to the categorical
label input. Third, the encoder successfully learns to cluster
images of the same digit on MNIST, as has been confirmed
in Fig. 11. As expected, such clustering phenomenon in code
space is not obvious on SVHN and CIFAR-10, as is evident
from the somewhat random assignment of latent codes to
images of the same class.

C. Text-to-Image Synthesis

This session presents an application of our model to text-
to-image synthesis. We show that the code generator can
transform the embedding of a sentence into a prior suitable
for synthesizing images that match closely the sentence’s
semantics. To this end, we learn supervisedly the correspon-
dence between images and their descriptive sentences using
the architecture in Fig. 7, where given an image-sentence pair,
the sentence’s embedding (which is a 200-D vector) generated
by a pre-trained recurrent neural network is input to the code
generator and the discriminator in image space as if it were
the label information, while the image representation is learned
through the autoencoder and regularized by the output of the

1393

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a) MNIST (b) SVHN (c) CIFAR-10

Fig. 9: Visualization of the code generator output in the supervised setting.

Fig. 10: Unsupervised learning architecture with the code
generator.

code generator. As before, a 100-D Gaussian is placed at the
input of the code generator to explain the variability of images
given the sentence.

The results in Fig. 13 present images generated by our
model when trained on 102 Category Flower dataset [11].
The generation process is much the same as that described in
Section IV-B1. It is seen that most images match reasonably
the text descriptions. In Fig. 14, we further explore how
the generated images change with the variation of the color
attribute in the text description. We see that most images agree
with the text descriptions to a large degree.

V. CONCLUSION

In this paper, we propose to learn a proper prior from data
for AAE. Built on the foundation of AAE, we introduce a
code generator to transform the manually selected simple prior
into one that can better fit the data distribution. We develop a
training process that allows to learn both the autoencoder and
the code generator simultaneously. We demonstrate its superior
performance over AAE in image generation and learning
disentangled representations in supervised and unsupervised
settings. We also show its ability to do cross-domain trans-
lation. Mode collapse and training instability are two major
issues to be further investigated in future work.

REFERENCES

[1] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and
O. Winther, “Autoencoding beyond pixels using a learned
similarity metric,” arXiv preprint arXiv:1512.09300,
2015.

(a) Our model (b) AAE

(c) Our model (d) AAE

(e) Our model (f) AAE

Fig. 11: Images generated by the proposed model (a)(c)(e)
and AAE (b)(d)(f) trained on MNIST, SVHN and CIFAR-10
datasets in the unsupervised setting. Each column of images
have the same label/class information but varied Gaussian
noise. On the other hand, each row of images have the same
Gaussian noise but varied label/class variables.

1394

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a) Encoder (MNIST) (b) Encoder (SVHN) (c) Encoder (CIFAR-10)

(d) Code generator (MNIST) (e) Code generator (SVHN) (f) Code generator (CIFAR-10)

Fig. 12: Visualization of the encoder output versus the code generator output in the unsupervised setting.

(a) This vibrant flower features lush
red petals and a similar colored pis-
til and stamen

(b) This flower has white and crum-
pled petals with yellow stamen

Fig. 13: Generated images from text descriptions.

Fig. 14: Generated images in accordance with the varying
color attribute in the text description ”The flower is pink in
color and has petals that are rounded in shape and ruffled.”
From left to right, the color attribute is set to pink, red, yellow,
orange, purple, blue, white, green, and black, respectively.
Note that there is no green or black flower in the dataset.

[2] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee,
H. Salimbeni, K. Arulkumaran, and M. Shanahan, “Deep
unsupervised clustering with gaussian mixture variational
autoencoders,” arXiv preprint arXiv:1611.02648, 2016.

[3] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and
B. Frey, “Adversarial autoencoders,” arXiv preprint
arXiv:1511.05644, 2015.

[4] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum,
“Learning a probabilistic latent space of object shapes
via 3d generative-adversarial modeling,” in Advances in

Neural Information Processing Systems, 2016, pp. 82–90.
[5] D. P. Kingma and M. Welling, “Auto-encoding varia-

tional bayes,” arXiv preprint arXiv:1312.6114, 2013.
[6] Y. Burda, R. Grosse, and R. Salakhutdinov,

“Importance weighted autoencoders,” arXiv preprint
arXiv:1509.00519, 2015.

[7] M. D. Hoffman and M. J. Johnson, “Elbo surgery:
yet another way to carve up the variational evidence
lower bound,” in Workshop in Advances in Approximate
Bayesian Inference, NIPS, 2016.

[8] P. Goyal, Z. Hu, X. Liang, C. Wang, and E. Xing, “Non-
parametric variational auto-encoders for hierarchical rep-
resentation learning,” arXiv preprint arXiv:1703.07027,
2017.

[9] J. M. Tomczak and M. Welling, “Vae with a vampprior,”
arXiv preprint arXiv:1705.07120, 2017.

[10] X. Chen, Y. Duan, R. Houthooft, J. Schulman,
I. Sutskever, and P. Abbeel, “Infogan: Interpretable repre-
sentation learning by information maximizing generative
adversarial nets,” in Advances in Neural Information
Processing Systems, 2016, pp. 2172–2180.

[11] M.-E. Nilsback and A. Zisserman, “Automated flower
classification over a large number of classes,” in Pro-
ceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing, Dec 2008.

1395

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

TABLE II: Implementation details of the encoder and decoder
networks

Encoder Decoder
Input 32 x 32 images Input latent code ∈ Rcode size

3 x 3 conv. 64 RELU stride 2 pad 1 4 x 4 upconv. 512 BN. RELU stride 1
3 x 3 residual blcok 64 4 x 4 up sampling residual block 256 stride 2
3 x 3 down sampling residual blcok 128 stride 2 4 x 4 up sampling residual block 128 stride 2
3 x 3 down sampling residual blcok 256 stride 2 4 x 4 up sampling residual block 64 stride 2
3 x 3 down sampling residual block 512 stride 2 3 x 3 conv. image channels Tanh
4 x 4 avg. pooling stride 1
FC. 2 x code size BN. RELU
FC. code size Linear

TABLE III: Implementation details of the code generator
networks

Code Generator Residual block
Input noise ∈ Rnoise size Input feature map
FC. 2 x noise size BN. RELU 3 x 3 conv. out channels RELU stride 2 pad 1
FC. latent code size BN. Linear 3 x 3 conv. out channels RELU stride 1 pad 1

skip connection output = input + residual
RELU

APPENDIX A
IMPLEMENTATION DETAILS

Table II, Table III, and Table IV presents the implementation
details of each components in our model. Each cell in the
tables presents the type of neural networks, the output size,
w/o batch normalization, the type of activation function, the
size for strides, and the size of padding. Lastly, Fig. 15 presents
the detailed architecture of the proposed model.

TABLE IV: Implementation details of the image and code
discriminator

Image Discriminator D/Q Code Discriminator
Input 32 x 32 images Input latent code
4 x 4 conv. 64 LRELU stride 2 pad 1 FC 1000 LRELU
4 x 4 conv. 128 BN LRELU stride 2 pad 1 FC 500 LRELU
4 x 4 conv. 256 BN LRELU stride 2 pad 1 FC 200 LRELU
FC. 1000 LRELU FC 1 Sigmoid
FC 1 Sigmoid for D
FC 10 Softmax for Q

Fig. 15: The detailed model architecture.

1396

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:55-0500
	Preflight Ticket Signature

