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Abstract— Convolutional neural network (CNN) is the most 

powerful artificial intelligence algorithm widely used in 

computer vision due to its state-of-the-art performance. There 

are many accelerators proposed for CNN to handle its huge 

computation and communication cost. In this paper we proposed 

a reconfigurable process engine which can support different data 

flows, bit-widths, and parallelism strategies for CNNs. The 

process engine was implemented on Xilinx ZC706 FPGA board, 

with high flexibility to support all popular CNNs, and better 

energy efficiency compared to other state-of-the-art designs.  

I. INTRODUCTION 

Since state-of-the-art CNNs [1–4] require more than 600k 

operations per input pixel and up to hundreds of MB storage  

for the weights and activations, specific accelerators are 

required to handle the huge challenges in computation, 

storage, and communication. There are some accelerators [5-

11] proposed for the CNNs to overcome these challenges. 

Some accelerators obtain high performance and good energy 

efficiency, but with low flexibility to support only one 

specific CNN. Other accelerators use huge resources to obtain 

better flexibility to support various CNNs but with complex 

architecture and high energy consumption. Since the process 

engine is the main computation module which consumes the 

vast majority of the power of the accelerator, a reconfigurable 

and energy efficient process engine is required to support the 

acceleration of various CNNs.  

  As we proposed in [5], a highly efficient CNN acceleration 

needs the co-design of hardware and software with 

reconfigurable ISA and process engine. In this paper, we 

improved and detailed the reconfigure process engine and 

implemented it on an FPGA. The experimental result shows 

that it supports all popular CNNs and obtains better energy 

efficiency than other designs. The main contributions of this 

paper are: 

1. Proposed a CNN-specific reconfigurable process engine, 

which supports different parallel computations, bit-

widths, and data reuses of all popular CNNs. 

2. Implemented an accelerator with the proposed process 

engine on an FPGA, and obtains better energy 

efficiency than other state-of-the-art designs. 

The paper is organized as follows. Section II describes the 

design principle of the CNN process engine. Section III shows 

the design details of the process engine. Section IV gives the 

evaluation and comparison. Finlay is the conclusion. 

 

II. DESIGN PRINCIPLE OF THE CNN PROCESS ENGINE 

There are two ways to improve the CNN acceleration 

efficiency: increasing the parallel computation degrees and 

decreasing the data transfer cost. Most proposed accelerators 

use dedicated and complicated computation strategies and 

data flows to supports a specific CNN, which obtain high 

performance but are inflexible. Some solutions use complex 

controller to handle huge reconfigurable hardware resources 

to fit different CNNs, improving flexibility but with high 

power consumption. A process engine with great trade-off 

between flexible and energy efficiency is required.  

 

 
Fig .1 AlexNet framework. 

 

A. Flexibility 

Since more than 90% computation cost of CNNs happens 

in the convolutional layers, a process engine efficiently 

supporting different convolution operations will obtain ideal 

flexibility. For different CNNs or different layers in the CNN, 

the convolutions have different kernel sizes, channel numbers, 

and feature map sizes. As the AlexNet shown in the Fig 1, in 

different convolutional layers, the kernel size K can be 11, 5, 

or 3; the feature map size L can be 224, 55, 27, or 13; and the 

channel number C can be 3, 48,128, or 193. For other CNNs 

such as VGG and GoogleNet, the kernel size K can be only 1 

and the channel number C can be as many as 1024. In 

addition, there are different choices of the no-convolutional 

operations in the convolutional layers, such as the different 

activation functions (ex. Relu, sigmoid), pooling (ex. max 

pooling, average pooling). To obtain better flexibility, the 

process engine needs to support all above-mentioned 

operations in the convolutional layers. 
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B. Energy efficiency 

 Due to different types of the convolutional operations and 

different sizes of the operands in CNNs, the hardware requires 

various computation strategies and data flows to obtain high 

energy efficiency. For the computation strategy, there are 3 

types of data-level parallelisms for the CNN: input parallelism 

Pin, convolutional parallelism Pc, and output parallelism Pout. 

For the data flow of CNN, there are three reuse strategies 

including input feature reuse, convolution reuse, and weight 

reuse. Since the inner fault tolerance of the CNN, the weights 

of the CNN can be compressed into very low bits, such as 4 

bits. Low-bit weights reduce both the computation and 

communication cost. For better energy efficiency, the process 

engine needs to support these various CNN acceleration 

strategies and different bit-widths. 

 

III. HARDWARE ARCHITECTURE  

A. Process engine for convolution operations 

The most computational cost block in CNN is the 

convolution, whose fundamental operation is multiplication 

and accumulation (MAC). In this design, the convolution 

process engine consists of multiplier and adder trees to handle 

the MAC operations.  

1) Specific Multiplier element  

A specific Multiplier element (ME) is proposed to handle 

the mass multiplications, as shown in Fig 2. Since the bit-

width of the weight in the CNNs can be compressed to 4-16 

bits, this ME is designed to support 4-bit, 8-bit, and 16-bit 

weight multiplications to improve the resource utilization. 

The ME consists of four multipliers to handle the 

multiplication with 16-bit and 4-bit operands. For 4-bit 

weights, four multipliers work independently and the bit 

shifter is turned off, so there are four multiplications 

processed in parallel and output four results. For 8-bit weights, 

two multipliers are combined to work together. One multiplier 

handles the high 4 bits weight multiplication and the other 

handles the low 4 bits, then the high bits result is left shifted 

and added with the low bits result to obtain the 8-bit 

multiplication result. There are two multiplications processed 

in parallel and output two results for 8-bit weight situation. 

For 16-bit weights, four multipliers work together and output 

only one multiplication result. The ME has a Mux to choses 

the input data from the exchange data (the adjacent ME) or 

from the register files to form various ME groups for 

convolutional computations. The data exchange between the 

multipliers realizes the convolutional data reuse.  

 

2) Convolution process engine 

Fig. 3 is the convolutional process engine (CPE), which 

contains 2 ME arrays and adder trees. There are 27 MEs in 

each ME array and the adjacent MEs are connected with each 

other.  

 
 

Input 

MUX  (2-1)

Register

16b

Exchange 

data

Register 

data

Input choose 

signal

Exchange 

data

Result 

Data 1

weight

 

Bit 

shifter

 

 

Bit 

shifter

Bit 

shifter

MUX 

&

adder

4 bit multiplier 

Result 

Data 2

Result 

Data 3

Result 

Data 4

Shifter control

signal 

 
 

Fig.2. Multiplier element (ME). 

 

 

ME ME ME ME ME ME ME ME ME

ME ME ME ME ME ME ME ME ME

Input data channel

Input data channel 

………  27 MEs

………  27 MEs

Switch network

Adder trees

Switch network

Temporary data for other CPE

Temporary data for other CPE

BRAMs

Temporary data

Temporary data

Temporary/result  data

 

Fig.3. Convolution process engine [5].   

 

 

 
 

Fig.4. 3 level switch network. 

 

The ME can choose the data from the left ME though the 

connections between each other or choose the input feature 

from the register files though the input data channels. The ME 

and adder trees are connected by a switch network to 

implement the MAC operations. The temporary/final results 

of the MAC will be stored into the data buffer BRAMs.  The 

MEs and adder trees can be organized to fit different 

convolutional parallel computations according to the 
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convolution kernel size k, the parallel degree parameters, and 

so on. 
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Fig.5. CPE configuration when kernel K= 3. [5]. 

 

3) Convolution process engine reconfiguration 

The CPE can be reconfigured to support different 

convolutional parallel computations and various data ruses. 

For the convolutional computation, reconfigurable switch 

networks are used to implement different sizes of 

convolutions and different parallelisms, as shown in Fig. 4. 

There are three levels of switch networks in the design. The 

first level switch network sets the connections between the 

multipliers and adders, and adds up K products of the 

multipliers by cutting off the (K + 1)th adder’s connection, 

which is shown in the uppermost switch network in Fig.4. The 

second level switch network sets the connections to add Pc  

K outputs from the adder trees to implement Pc convolutional 

parallelism, and then adds with the Pin temporary MAC 

results (Pin is the number of feature channels) from the other 

ME arrays to implement Pin input parallelism, which is 

shown in the middle switch network in Fig.4. The final level 

switch network combines the temporary results from the 

RAM or other CPEs, and stores the temporary/final result 

back to the RAM, as shown in the bottom switch network in 

Fig.4. The Switch network sets the connections in the CPE 

according to the kernel size K, parallel degree Pc and Pin. 

The parallelism parameters determine three types of data 

reuse. For the convolutional reuse, it obtains the best data 

reuse when Pc = K2, and every row of the input feature only 

needs to be loaded once. It obtains 4 input features reuse for 

4-bit weight, since the input feature is shared by four 

multipliers in every ME. The weight reuse is improved by 

increasing the input parallelism Pin with the connected ME 

arrays. The larger Pin also reduces the access frequency of 

temporary Psum data by Pin times. 
Fig.5 is the example of CPE configuration when the 

convolution kernel K= 3.  The first (red one) of every K MEs 

chooses the operands from register files, and others choose 

input from the front one and the weight stays stationary. 

Every row of the input feature is reused by k times so that it 

only needs to be read once and Pc = K2.  The switch network 
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Fig.6. Activation function process engine  
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Fig.7. Pooling process engine 

 

connects the output of 9 multipliers with the adders to form 3 

adder trees for the convolution output. Here Pin = 1 for single 

CPE.   

B. Process engine for activation function. 

The convolution output of the CNN will be processed by 

the activation function. There are two types of activation 

functions. One is the simple linear computational model such 

as the ReLU. The other is the complex non-linear model with 

relatively large computational cost due to exponential and 

division operations, such as the sigmoid. For the complex 

activation function, a linear approximation can be used to 

reduce the computation complexity with certain accuracy loss. 

In our design, a linear approximation as the follow formula is 

proposed, where x is the input feature value, Ai and Bi 

represent the coefficients for x within the range of [xi, xi+1]. 

The accuracy loss is negligible since the approximation 

formula is extremely close to the actual activation function. 

 

F(x) = Ai * x + Bi           

 

  The process engine for the activation function is shown in 

Fig 6. The coefficient parameters are stored into the parameter 

buffer at the initial time. For this simple activation function, 

the A and B are all constant values and there are no any 

parameter buffer access. For the complex activation function,  

the Mux and buffer controller need to find the right 

coefficients from the buffer according to the input feature 

value, and then store the coefficients into the registers a and b 

respectively. Then the multiplier and adder compute the result  
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of activation function. The approximation can reduce more 

than 80% energy consumption compared to the normal 

sigmoid computation.  

C. Process engine for pooling  

There are two types of pooling in the CNNs: average 

pooling and max pooling.  The pooling process engine shown 

in Fig 7 is designed to support both pooling. For the max 

pooling, the comparer (CMP) compares the input feature and 

the previous feature stored in the register, and writes back the 

larger one into the register. For the average pooling, the ACC 

is used to accumulate the input features, and the sum is shifted 

by the Bit shifter to realize the average computation. The Mux 

chooses the input from the ACC or the input from CMP to 

perform these two types of pooling respectively.  

IV. EVALUATION AND COMPARISON 

We implemented the process engine and the CNN 

accelerator, and synthesized, verified, and evaluated the 

design using Xilinx EDA tool Vivado 2015.4 on the Zynq 

ZC706 platform. Table I shows the resource utilization of 

our design. 

 

TABLE I  

Resource utilization 
Resource  LUT FF BRAM DSP 

Utilization 26009 9170 26 801 

Percentage 11.88% 1.98% 4% 89.7% 

 

Compare to the work [5], the process engine in this design 

contains more multipliers, and the utilization of DSP is 

increased. We also implemented four most popular CNNs: 

AlexNet[1], VGG[2], Google net[3], and Deep Residual 

network[4] on the accelerator. The comparisons of 

performance and energy efficiency are shown in Table II and 

Table III respectively.   

 

TABLE II.  

Performance comparison  
Work Power (w) AlexNet GoogleNet VGG 

Work[5] 0.461 201 ms 514 ms 1642 ms 

Ours 0.784 48 ms 136 ms 587 ms 

 

TABLE III.  

Energy efficiency comparison (frame/J) 
work Power (w) AlexNet GoogleNet VGG 

Work[5] 0.461 11.0 4.21 1.32 

Ours 0.784 27.8 9.37 2.17 

 

 

From the comparison, the accelerator obtains almost 4x 

higher performance and more than 2x better energy efficiency 

compared to work [5], mainly because of the improvement of  

 

 

 

 

process engine.  The process engine not only supports 

different parallel computations and data reuse strategies, but 

also supports different bit-width computation for different 

CNN layers and different CNNs, which significant reduce the 

computation and communication cost. 

 

V. CONCLUSIONS AND ACKNOWLEDGMENT 

In this paper we proposed a reconfigure process engine 

which can support different data flows, bit-widths, and 

parallelism strategies for CNNs. We implemented the process 

engine and CNN accelerator on the Xilinx ZC706 FPGA 

board. Experiment data shows that the accelerator obtains 

high flexibility, and with 2x better energy efficiency 

compared to other state-of-the-art designs.  
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