
A Reconfigurable Process Engine for Flexible

Convolutional Neural Network Acceleration

Xiaobai Chen,

Shanlin Xiao and Zhiyi Yu

Sun Yat-sen University, Guangzhou 510006, China

E-mail: chenxb29@mail2.sysu.edu.cn; xiaoshlin@mail.sysu.edu.cn; yuzhiyi@mail.sysu.edu.cn

Abstract— Convolutional neural network (CNN) is the most

powerful artificial intelligence algorithm widely used in

computer vision due to its state-of-the-art performance. There

are many accelerators proposed for CNN to handle its huge

computation and communication cost. In this paper we proposed

a reconfigurable process engine which can support different data

flows, bit-widths, and parallelism strategies for CNNs. The

process engine was implemented on Xilinx ZC706 FPGA board,

with high flexibility to support all popular CNNs, and better

energy efficiency compared to other state-of-the-art designs.

I. INTRODUCTION

Since state-of-the-art CNNs [1–4] require more than 600k

operations per input pixel and up to hundreds of MB storage

for the weights and activations, specific accelerators are

required to handle the huge challenges in computation,

storage, and communication. There are some accelerators [5-

11] proposed for the CNNs to overcome these challenges.

Some accelerators obtain high performance and good energy

efficiency, but with low flexibility to support only one

specific CNN. Other accelerators use huge resources to obtain

better flexibility to support various CNNs but with complex

architecture and high energy consumption. Since the process

engine is the main computation module which consumes the

vast majority of the power of the accelerator, a reconfigurable

and energy efficient process engine is required to support the

acceleration of various CNNs.

 As we proposed in [5], a highly efficient CNN acceleration

needs the co-design of hardware and software with

reconfigurable ISA and process engine. In this paper, we

improved and detailed the reconfigure process engine and

implemented it on an FPGA. The experimental result shows

that it supports all popular CNNs and obtains better energy

efficiency than other designs. The main contributions of this

paper are:

1. Proposed a CNN-specific reconfigurable process engine,

which supports different parallel computations, bit-

widths, and data reuses of all popular CNNs.

2. Implemented an accelerator with the proposed process

engine on an FPGA, and obtains better energy

efficiency than other state-of-the-art designs.

The paper is organized as follows. Section II describes the

design principle of the CNN process engine. Section III shows

the design details of the process engine. Section IV gives the

evaluation and comparison. Finlay is the conclusion.

II. DESIGN PRINCIPLE OF THE CNN PROCESS ENGINE

There are two ways to improve the CNN acceleration

efficiency: increasing the parallel computation degrees and

decreasing the data transfer cost. Most proposed accelerators

use dedicated and complicated computation strategies and

data flows to supports a specific CNN, which obtain high

performance but are inflexible. Some solutions use complex

controller to handle huge reconfigurable hardware resources

to fit different CNNs, improving flexibility but with high

power consumption. A process engine with great trade-off

between flexible and energy efficiency is required.

Fig .1 AlexNet framework.

A. Flexibility

Since more than 90% computation cost of CNNs happens

in the convolutional layers, a process engine efficiently

supporting different convolution operations will obtain ideal

flexibility. For different CNNs or different layers in the CNN,

the convolutions have different kernel sizes, channel numbers,

and feature map sizes. As the AlexNet shown in the Fig 1, in

different convolutional layers, the kernel size K can be 11, 5,

or 3; the feature map size L can be 224, 55, 27, or 13; and the

channel number C can be 3, 48,128, or 193. For other CNNs

such as VGG and GoogleNet, the kernel size K can be only 1

and the channel number C can be as many as 1024. In

addition, there are different choices of the no-convolutional

operations in the convolutional layers, such as the different

activation functions (ex. Relu, sigmoid), pooling (ex. max

pooling, average pooling). To obtain better flexibility, the

process engine needs to support all above-mentioned

operations in the convolutional layers.

1402

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

B. Energy efficiency

 Due to different types of the convolutional operations and

different sizes of the operands in CNNs, the hardware requires

various computation strategies and data flows to obtain high

energy efficiency. For the computation strategy, there are 3

types of data-level parallelisms for the CNN: input parallelism

Pin, convolutional parallelism Pc, and output parallelism Pout.

For the data flow of CNN, there are three reuse strategies

including input feature reuse, convolution reuse, and weight

reuse. Since the inner fault tolerance of the CNN, the weights

of the CNN can be compressed into very low bits, such as 4

bits. Low-bit weights reduce both the computation and

communication cost. For better energy efficiency, the process

engine needs to support these various CNN acceleration

strategies and different bit-widths.

III. HARDWARE ARCHITECTURE

A. Process engine for convolution operations

The most computational cost block in CNN is the

convolution, whose fundamental operation is multiplication

and accumulation (MAC). In this design, the convolution

process engine consists of multiplier and adder trees to handle

the MAC operations.

1) Specific Multiplier element

A specific Multiplier element (ME) is proposed to handle

the mass multiplications, as shown in Fig 2. Since the bit-

width of the weight in the CNNs can be compressed to 4-16

bits, this ME is designed to support 4-bit, 8-bit, and 16-bit

weight multiplications to improve the resource utilization.

The ME consists of four multipliers to handle the

multiplication with 16-bit and 4-bit operands. For 4-bit

weights, four multipliers work independently and the bit

shifter is turned off, so there are four multiplications

processed in parallel and output four results. For 8-bit weights,

two multipliers are combined to work together. One multiplier

handles the high 4 bits weight multiplication and the other

handles the low 4 bits, then the high bits result is left shifted

and added with the low bits result to obtain the 8-bit

multiplication result. There are two multiplications processed

in parallel and output two results for 8-bit weight situation.

For 16-bit weights, four multipliers work together and output

only one multiplication result. The ME has a Mux to choses

the input data from the exchange data (the adjacent ME) or

from the register files to form various ME groups for

convolutional computations. The data exchange between the

multipliers realizes the convolutional data reuse.

2) Convolution process engine

Fig. 3 is the convolutional process engine (CPE), which

contains 2 ME arrays and adder trees. There are 27 MEs in

each ME array and the adjacent MEs are connected with each

other.

Input

MUX (2-1)

Register

16b

Exchange

data

Register

data

Input choose

signal

Exchange

data

Result

Data 1

weight

Bit

shifter

Bit

shifter

Bit

shifter

MUX

&

adder

4 bit multiplier

Result

Data 2

Result

Data 3

Result

Data 4

Shifter control

signal

Fig.2. Multiplier element (ME).

ME ME ME ME ME ME ME ME ME

ME ME ME ME ME ME ME ME ME

Input data channel

Input data channel

……… 27 MEs

……… 27 MEs

Switch network

Adder trees

Switch network

Temporary data for other CPE

Temporary data for other CPE

BRAMs

Temporary data

Temporary data

Temporary/result data

Fig.3. Convolution process engine [5].

Fig.4. 3 level switch network.

The ME can choose the data from the left ME though the

connections between each other or choose the input feature

from the register files though the input data channels. The ME

and adder trees are connected by a switch network to

implement the MAC operations. The temporary/final results

of the MAC will be stored into the data buffer BRAMs. The

MEs and adder trees can be organized to fit different

convolutional parallel computations according to the

1403

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

convolution kernel size k, the parallel degree parameters, and

so on.

F11 F12 F13 ……

F21 F22 F23 ……

F31 F32 F33 ……

W11 W12 W13

W21 W22 W23

W31 W32 W33

ME ME ME ME ME ME ME ME ME

Feature data: row 1

W11 W12 W13 W21 W22 W23 W31 W32 W33

ME ME ME ME ME ME ME ME ME

Feature data: row 2

W11 W12 W13 W21 W22 W23 W31 W32 W33

ME ME ME ME ME ME ME ME ME

Feature data: row 3

W11 W12 W13 W21 W22 W23 W31 W32 W33

Feature map data Convolution weight (3x3)

No 1-9

multiplier

No 10-18

multiplier

No 19-27

multiplier

Fig.5. CPE configuration when kernel K= 3. [5].

3) Convolution process engine reconfiguration

The CPE can be reconfigured to support different

convolutional parallel computations and various data ruses.

For the convolutional computation, reconfigurable switch

networks are used to implement different sizes of

convolutions and different parallelisms, as shown in Fig. 4.

There are three levels of switch networks in the design. The

first level switch network sets the connections between the

multipliers and adders, and adds up K products of the

multipliers by cutting off the (K + 1)th adder’s connection,

which is shown in the uppermost switch network in Fig.4. The

second level switch network sets the connections to add Pc

K outputs from the adder trees to implement Pc convolutional

parallelism, and then adds with the Pin temporary MAC

results (Pin is the number of feature channels) from the other

ME arrays to implement Pin input parallelism, which is

shown in the middle switch network in Fig.4. The final level

switch network combines the temporary results from the

RAM or other CPEs, and stores the temporary/final result

back to the RAM, as shown in the bottom switch network in

Fig.4. The Switch network sets the connections in the CPE

according to the kernel size K, parallel degree Pc and Pin.

The parallelism parameters determine three types of data

reuse. For the convolutional reuse, it obtains the best data

reuse when Pc = K2, and every row of the input feature only

needs to be loaded once. It obtains 4 input features reuse for

4-bit weight, since the input feature is shared by four

multipliers in every ME. The weight reuse is improved by

increasing the input parallelism Pin with the connected ME

arrays. The larger Pin also reduces the access frequency of

temporary Psum data by Pin times.
Fig.5 is the example of CPE configuration when the

convolution kernel K= 3. The first (red one) of every K MEs

chooses the operands from register files, and others choose

input from the front one and the weight stays stationary.

Every row of the input feature is reused by k times so that it

only needs to be read once and Pc = K2. The switch network

AF parameter

Buffer

Mux
Buffer

Controller

Reg a

+

Reg b

AF

parameter

value

Input

feature output

Fig.6. Activation function process engine

Reg

16b

Mux

Acc

Bit shifter

Control

signal

Input

feature

CMP

Fig.7. Pooling process engine

connects the output of 9 multipliers with the adders to form 3

adder trees for the convolution output. Here Pin = 1 for single

CPE.

B. Process engine for activation function.

The convolution output of the CNN will be processed by

the activation function. There are two types of activation

functions. One is the simple linear computational model such

as the ReLU. The other is the complex non-linear model with

relatively large computational cost due to exponential and

division operations, such as the sigmoid. For the complex

activation function, a linear approximation can be used to

reduce the computation complexity with certain accuracy loss.

In our design, a linear approximation as the follow formula is

proposed, where x is the input feature value, Ai and Bi

represent the coefficients for x within the range of [xi, xi+1].

The accuracy loss is negligible since the approximation

formula is extremely close to the actual activation function.

F(x) = Ai * x + Bi

 The process engine for the activation function is shown in

Fig 6. The coefficient parameters are stored into the parameter

buffer at the initial time. For this simple activation function,

the A and B are all constant values and there are no any

parameter buffer access. For the complex activation function,

the Mux and buffer controller need to find the right

coefficients from the buffer according to the input feature

value, and then store the coefficients into the registers a and b

respectively. Then the multiplier and adder compute the result

1404

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

of activation function. The approximation can reduce more

than 80% energy consumption compared to the normal

sigmoid computation.

C. Process engine for pooling

There are two types of pooling in the CNNs: average

pooling and max pooling. The pooling process engine shown

in Fig 7 is designed to support both pooling. For the max

pooling, the comparer (CMP) compares the input feature and

the previous feature stored in the register, and writes back the

larger one into the register. For the average pooling, the ACC

is used to accumulate the input features, and the sum is shifted

by the Bit shifter to realize the average computation. The Mux

chooses the input from the ACC or the input from CMP to

perform these two types of pooling respectively.

IV. EVALUATION AND COMPARISON

We implemented the process engine and the CNN

accelerator, and synthesized, verified, and evaluated the

design using Xilinx EDA tool Vivado 2015.4 on the Zynq

ZC706 platform. Table I shows the resource utilization of

our design.

TABLE I

Resource utilization
Resource LUT FF BRAM DSP

Utilization 26009 9170 26 801

Percentage 11.88% 1.98% 4% 89.7%

Compare to the work [5], the process engine in this design

contains more multipliers, and the utilization of DSP is

increased. We also implemented four most popular CNNs:

AlexNet[1], VGG[2], Google net[3], and Deep Residual

network[4] on the accelerator. The comparisons of

performance and energy efficiency are shown in Table II and

Table III respectively.

TABLE II.

Performance comparison
Work Power (w) AlexNet GoogleNet VGG

Work[5] 0.461 201 ms 514 ms 1642 ms

Ours 0.784 48 ms 136 ms 587 ms

TABLE III.

Energy efficiency comparison (frame/J)
work Power (w) AlexNet GoogleNet VGG

Work[5] 0.461 11.0 4.21 1.32

Ours 0.784 27.8 9.37 2.17

From the comparison, the accelerator obtains almost 4x

higher performance and more than 2x better energy efficiency

compared to work [5], mainly because of the improvement of

process engine. The process engine not only supports

different parallel computations and data reuse strategies, but

also supports different bit-width computation for different

CNN layers and different CNNs, which significant reduce the

computation and communication cost.

V. CONCLUSIONS AND ACKNOWLEDGMENT

In this paper we proposed a reconfigure process engine

which can support different data flows, bit-widths, and

parallelism strategies for CNNs. We implemented the process

engine and CNN accelerator on the Xilinx ZC706 FPGA

board. Experiment data shows that the accelerator obtains

high flexibility, and with 2x better energy efficiency

compared to other state-of-the-art designs.

This work was supported in part by grant from national

nature science foundation of China (NSFC) under grant

No.61674173.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” in Proc.

Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman. (2014). “Very deep

convolutional networks for large-scale image recognition.”

[Online]. Available: https://arxiv.org/abs/1409.1556

[3] C. Szegedy et al., “Going deeper with convolutions,” in Proc.

IEEE Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9. 378

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Comput. Vis. Pattern

Recognit., Jun. 2016, pp. 770–778.

[5] Chen, Xiaobai, and Zhiyi Yu. "A Flexible and Energy-Efficient

Convolutional Neural Network Acceleration With Dedicated

ISA and Accelerator." IEEE Transactions on Very Large Scale

Integration Systems 26.7 (2018): 1408-1412.

[6] Zhang C, Li P, Sun G, et al. Optimizing FPGA-based

Accelerator Design for Deep Convolutional Neural

Networks[C]// Acm/sigda International Symposium. ACM,

2015:161-170.

[7] Qiu J, Wang J, Yao S, et al. Going Deeper with Embedded

FPGA Platform for Convolutional Neural Network[C]//

Acm/sigda International Symposium on Field-Programmable

Gate Arrays. ACM, 2016.

[8] Suda N, Chandra V, et al. Throughput-Optimized OpenCL-

based FPGA Accelerator for Large-Scale Convolutional Neural

Networks[C]// Acm/sigda International Symposium on Field-

Programmable Gate Arrays. ACM, 2016.

[9] Moons, Bert, and M. Verhelst. "An Energy-Efficient Precision-

Scalable ConvNet Processor in 40-nm CMOS." IEEE Journal of

Solid-State Circuits 52.4(2017):903-914.

[10] Yin, Shouyi, et al. "A High Energy Efficient Reconfigurable

Hybrid Neural Network Processor for Deep Learning

Applications." IEEE Journal of Solid-State Circuits

53.4(2018):968-982.

1405

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:55-0500
	Preflight Ticket Signature

