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Abstract—This paper describes an efficient attempt to build
a three-layer emotion perception model consisting of acoustic
features, semantic primitives, and emotion dimensions with a
focus on acoustic feature subset selection. Previous studies
using this model focused on the most relevant acoustic features
using a Pearson correlation coefficient-based filter approach,
which could only capture the relation limited to linear function
well. However, perception of human emotion is vague; linear
correlation measures could not capture the relations that are
not linear in nature. In this study, we introduce a novel feature
selection algorithm based on the maximal information
coefficient and predominant correlation, which can identify
relevant features between paired variables in spite of linear or
nonlinear relations and remove redundancies among the
relevant features. Experimental results on the Berlin Emo-DB
and Chinese Emotional Speech Corpus demonstrated that the
proposed algorithm achieves an improvement to estimation of
emotion dimensions, resulting in a smaller mean absolute error
and higher correlation coefficient between estimations and
human evaluations, compared with the referred Pearson
correlation coefficient-based method, and the commonly used
wrapper-based method of sequential floating forward selection.

I. INTRODUCTION

Speech emotion recognition, which aims to identify an
emotional state from human voices, has gained more
attention in the area of affective computing. The purpose is
to enrich user-friendly computer-based interaction in a
system to understand human behaviors not only in terms of
what a person says, but also how it is expressed [1]. In
call-center applications, for instance, speech emotion
recognition could be adopted to enable the application to
respond better upon identifying frustration or annoyance in a
customer’s voice [2]. Likewise, information about the mental
state of a driver can be also provided to an in-car board
system to initiate strategies for his or her safety [3].
Moreover, an automatic speech-to-speech translation system
may be greatly enriched by understanding the emotions of a
speaker in affective communication between parties [4]. In
this paper, we focus on automatic emotion recognition from
speech, and specifically, presenting an algorithm of acoustic
feature subset selection with the goal toward implementing a
three-layer emotion perception model.

In recent years, there are two major approaches that define
vocal emotions: categorical and dimensional-based. The
categorical-based approach divides human emotions into a
small set of discrete categories, such as happiness, anger,
sadness, and so on [5] [6]. However, the emotional
expression of natural speech in general is not binary, i.e.,
anger or sadness, but may change the intensities of a certain
emotion over time, such as a little anger or much anger [7]
[8]. To describe the rich variation of the intensity of
emotional states, the approach for emotion definition has
shifted from categorical to dimensional-based, where
emotions can be defined as points in a dimensional space
spanned by valence (pleasant and unpleasant) and arousal
(relaxed and aroused). Our study uses this two-dimensional
emotion space to characterize emotions embedded in speech.

The dimensional-based approach contributes to resolving a
significant challenge in speech emotion recognition, namely
describing emotion transitions gradually and continuously.
However, studies related to speech emotion recognition still
face several challenges, one of which is the accurate
estimation of dimensions of valence and arousal. Many
studies focused on acoustic features and their correlates to
emotion dimensions by incorporating different estimators
such as a fuzzy inference system (FIS) and support vector
regression [9] [10]. The limitation of these works, however,
is that performance has been poor in terms of valence. This
is possibly due to the difficulty of determining a set of
distinguished acoustic features for estimating valence.

To overcome this challenging task on improving
estimation accuracies on emotion dimensions directly from
acoustic features, reference [11] presented a three-layer
model, inspired by an adapted version of Brunswik’s lens
model [13], to describe human emotion perception as a
multi-layer process. This model consists of acoustic features,
semantic primitives, and emotion dimensions, where it
assumed that human perception of emotion embedded in
speech did not originate directly from a change in acoustic
cues but from an indirect route of a more subtle perception
of semantic primitives. This reference later ensured the fact
that the selected acoustic features that were highly correlated
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with semantic primitives were promising for improving
estimation accuracies of emotion dimensions, especially for
valence.

As this three-layer model benefits from determining
relevant acoustic features with emotion dimensions through
semantic primitives, a new challenge arose: how to select
relevant acoustic features for semantic primitives from a
rough set of data. One way to select a set of compact
features for pattern recognition that has been heavily used is
to use a wrapper-based method [14]. This approach generally
incorporates a specific learning algorithm into a close-loop
for searching an optimal subset of features, and can
potentially achieve a better learning performance. However,
it also has a higher risk of over-fitting and is very
computationally intensive [15] [16]. As an alternative to the
wrappers, a filter-based approach is comparatively appealing
for feature selection on the grounds that it could easily be
scaled up to high-dimensional speech features, it is
computationally simple and fast, and it is not dependent on
the classifiers or estimators [17].

Reference [11] adopted a feature selection algorithm by
incorporating the Pearson correlation coefficients to select
relevant features by a linear measure (hereafter P-CCFS).
They first calculated the Pearson correlation coefficient
(PCC) between acoustic features and semantic primitives
individually, and the degree of relevance was quantified
within the range -1–1, where -1 is total negative linear
correlation, 1 is total positive linear correlation, and 0 is no
linear correlation. These correlation coefficients were then
ranked on the basis of their absolute scale; those greater than
0.45 were finally selected as relevant acoustic features for
semantic primitives.

Despite the substantial advances in the three-layer model,
the limitation of P-CCFS, however, are considerable due to
following reasons. First, the PCC can naively capture linear
relationship between features and target, but can not capture
correlations that are not linear in nature. Human emotion
perception, for instance, is vague, complex, and has
multi-processes; it does not suffice to always use linear
correlation to capture the association between acoustic
feature and semantic primitives. Second, although P-CCFS
could define the relevant features by a decided threshold
0.45, it cannot determine any redundancies among them.
Several studies on feature selection have further claimed that
in addition to irrelevant features, redundant features affect
the performance of learning algorithms as well, and thus,
should also be removed [18] [19].

The motivation of the present study is to introduce a novel
feature selection algorithm with the capability to effectively
determine the relevant features and remove any redundancies
among them. To this end, we first present a correlation
measure to quantify the degree of relevance between features
and target on the basis of the maximal information
coefficient (MIC) [20], which could capture a wide range of
associations between paired variables in spite of linear or
non-linear relations, that is well suited to measure relations
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Fig. 1. Schematic diagram of the three-layer emotion perception model

between acoustic features and semantic primitives in human
vague emotion perception. Additionally, we adopt a concept
of predominant correlation (PC) after [21] by incorporating
the MIC to remove any redundancies among the relevant
acoustic features. The proposed feature selection algorithm is
hereafter called MIC-PCFS.

The remainder of the paper is organized as follows.
Section 2 gives a description of the three-layer emotion
perception model and introduces the emotional corpora used
for the experiments. Section 3 presents MIC-PCFS in detail.
Section 4 reports the results of the experiments on emotion
estimation by incorporating MIC-PCFS, and comparisons
with other representative feature selection methods. Final
remarks are given in Section 5.

II. EMOTIONAL CORPUS AND RECOGNIZER

Fig. 1 illustrates a schematic diagram of the present
study’s system. The colored block highlights the scope of
this research to introduce a novel feature selection algorithm,
with the aim to implement a three-layer model for speech
emotion recognition. After receiving emotional speech as
input, features are then extracted. A set of compact relevant
acoustic features is then selected by MIC-PCFS. The
three-layer model incorporating fuzzy inference systems
finally takes the relevant features as input and maps them
into valence and arousal dimensions through semantic
primitives.

A. Emotional Corpus

The Berlin emotional speech database (Berlin Emo-DB),
which was previously used in the three-layer model in [11],
is first selected to analyze the performance of MIC-PCFS for
speech emotion recognition. Additionally, we further evaluate
the proposed approach using the Chinese emotional speech
corpus (CASIA) for discussion.

Berlin Emo-DB The German corpus was released by the
Institute of Speech and Communication, Technical University
of Berlin. Ten professional actors (five males and five
females) each uttered ten sentences in German to simulate
seven different emotions. The number of utterances of each
emotion was as follows: 127 anger, 81 boredom, 46 disgust,
69 fear, 71 joy, 79 neutral, and 62 sadness. Finally, 200
utterances previously used in [11] were selected from this
corpus with 50 utterances in each of the four emotion
categories: neutral, joy, anger, and sadness.
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CASIA The Chinese corpus was released by the Institute of
Automation, Chinese Academy of Sciences. It was composed
of 9600 utterances including six emotions: neutral, anger, fear,
surprise, happiness, and sadness. Four professional actors (two
males and two females) individually simulated each of these
emotions and produced 400 utterances in six categories of
different emotions. Ultimately, 200 utterances of spontaneous
content from the actors covering four similar emotions as those
in Berlin Emo-DB (neutral, happiness, sadness, and anger)
were selected, i.e. 50 utterances for each emotion.

B. Emotional Recognizer

The elements in terms of acoustic features, semantic
primitives, and emotion dimensions towards constructing the
three-layer model are detailed in this subsection.

Acoustic Features Feature extraction was performed per
utterance by the widely used OpenSMILE feature extraction
toolkit incorporating emo large.conf [22], producing 6552
audio-based features. This feature set includes 56 low-level
descriptors (LLDs), such as signal log-energy, fundamental
frequency, 13 Mel-frequency cepstrum coefficients etc., and
the first and second derivatives of each LLD. 39 statistical
functional parameters such as mean, standard deviation,
skewness, kurtosis, etc., are applied to the LLDs compute
each of the emotional utterances. For more details on the
emo large.conf set, the reader is referred to [23].

Semantic Primitives and Emotion Dimensions We
reported a human-perceptual-based framework to estimate
emotions from speech using a three-layer model, where it
was assumed that the human perception of emotion
embedded in speech did not originate directly from a change
in acoustic cues, but from an indirect route of a more subtle
perception of semantic primitives. Low arousal and negative
valence speech often implies that the speech was uttered
with dark and heavy feelings, but high arousal and positive
valence speech is oftentimes uttered in a bright and
well-modulated way. The set of semantic primitives derived
from [12] that we examined and used in the three-layer
model for describing emotional speech was: bright, dark,
high, low, strong, weak, calm, unstable, well-modulated,
monotonous, heavy, clear, noisy, quiet, sharp, fast, and slow.
To construct the three-layer model, the two emotional
corpora were first evaluated in terms of each semantic
primitive through human listening tests. Emotional speech
was evaluated 17 times by participants: once for each
semantic primitive for all utterances in one corpus. Each of
the 17 semantic primitives was scored on a five-point scale:
1 Does not feel at all, 2 Seldom feels, 3 Feels a little, 4
Feels, 5 Feels very much. Additionally, as this study
characterizes emotions using a dimensional space spanned by
valence and arousal, the corpora needed to be further
annotated in terms of emotional dimensions. The same
participants were asked to evaluate these dimensions on a
five-point scale (-2, -1, 0, 1, 2) for valence (-2 being very
negative and +2 being very positive) and arousal (-2 being
very relaxed and +2 being aroused).

Ten native Chinese speakers (five males and five females)
were asked to evaluate CASIA. However, it was impossible
for us to recruit enough native German speakers for the
listening test. Fortunately, several studies on psychology
have confirmed that the human ability to perceive emotion is
cross-lingual, even without understanding the linguistic
information expressed [4], [24], [25]. So, we asked nine
Japanese speakers (eight males and one female) to evaluate
Berlin Emo-DB instead. The basic theory of the semantic
primitives and emotion dimensions was explained to the
participants before they listened to a small set of demos
involving different degrees of a certain emotion. The training
test was designed to enable the listeners to understand the
adjectives or dimensions. All stimuli were played randomly
through binaural headphones at a comfortable sound pressure
level in a soundproof room.

The averaged results of inter-evaluator correlation for the
semantic primitives in terms of Berlin Emo-DB and CASIA
were almost identical with values ranging from 0.84–0.93
and 0.82–0.92, respectively. In addition, the average
correlation between evaluators over valence, and arousal was
0.92 and 0.94 for Berlin Emo-DB, and 0.85 and 0.91 for
CASIA. The inter-rater agreement was generally lower for
valence than for arousal, indicating human evaluations were
more poorly correlated in terms of valence compared to that
of arousal.

III. FEATURE SELECTION ALGORITHM

This section describes the proposed acoustic feature
selection algorithm to define the relevant features for the
semantic primitives, removing any possible redundancies
among them, enabling the implementation of a three-layer
model for speech emotion recognition.

A. Maximal Information Coefficient

The MIC was originally noted by Reshef [20] to identify a
novel measure of dependence for two-variable relationships,
which enables the capturing of a wide range of both
functional and nonfunctional associations. As the processing
of human vague emotion perception is complex due to the
possibility of both linear and nonlinear associations existing,
this measurement is well suited to quantify the degree of
relevance between acoustic features and semantic primitives.

Formally, the MIC can be given as follows: let D be a
finite set of two-variable data whose value is into the range
0–1, as (X ,Y ). Supposing X is partitioned into x bins, and
Y is partitioned into y bins. For a grid G, let D|G represent
the probability distribution induced by the D in the cells of
G, and let I(·) denote mutual information.

I∗(D,x, y) = maxGI(D|G) (1)

where the maximum is taken from all x-by-y grids G.
Furthermore, the MIC is obtained as:

MIC(D) = max
xy<N0.6

I∗(D,x, y)

log2min {x, y}
(2)
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where N is the sample size.
The value of the MIC falls into the range 0–1; a higher

value of MIC suggests a higher relevance between a feature
and target, and a value of zero denotes an independent
relationship. MIC is additionally symmetric in that
MIC(X ,Y )=MIC(Y ,X). The calculation function MINE
for MIC has been implemented and is available at
http : //minepy.readthedocs.io/en/latest/.

In this stage, a set of relevant acoustic features for each of
the semantic primitives can be defined on the basis of the
MIC value as follows: let F = {fi|i = 1, 2, ..., Nf} be a
rough set of acoustic features, where Nf is the total number
of acoustic features, and let S = {sj |j = 1, 2, ..., Nj} be a
set of semantic primitives, where Ns is the total number of
semantic primitives. MICi,j denotes a MIC value between
an acoustic feature fi and a semantic primitive sj . A set of
relevant acoustic features for a semantic primitive sj can be
obtained as Frel, where Frel =

{
fi|fi ∈ F,MICi,j ≥ δsj

}
,

and δsj is a pre-defined threshold MIC value.

B. MIC-based Predominant Correlation

A set of relevant features is traditionally good as long as
the weight of relevance for each relevant feature is greater
than a threshold value, even if some of these relevant features
are highly related with each other [26]. However, studies on
feature selection have shown that combining relevant features
does not necessarily result in a good performance, moreover,
the redundant features should also be considered [18] [19] [27]
[28].

To determine a compact set of relevant acoustic features,
this stage adopts a concept of predominant correlation after
[21] by incorporating the MIC to eliminate redundancies as
follows.

} The correlation between an acoustic feature fi and a
semantic primitive sj is predominant iff MICi,j ≥ δsj , and
∀fm ∈ Frel (m 6= i), there exists no fm such that s.t.
MICm,i ≥ MICi,j . In particular, if there exists such fm to
a feature fi, then fm is a redundant peer to fi.

} An acoustic feature is predominant to a semantic
primitive, iff its correlation to the semantic primitive is
predominant or can be predominant after eliminating its
redundant peers.

An acoustic feature fi is good if its relevance to a
semantic primitive sj , i.e. MICi,j , is at the maximum when
compared with the rest of the acoustic features in the
relevant set Frel, and is not redundant with those that have
already been decided. The idea of the acoustic feature
selection algorithm is to identify and keep the predominant
acoustic features.

The pseudo code of MIC-PCFS is as follows.
As demonstrated in Algorithm 1, MIC-PCFS defines a set

of predominant acoustic features Sj
Rel for each semantic

primitive per round, corresponding to bright (1), dark (2),
high (3), low (4), strong (5), weak (6), calm (7), unstable (8),
well-modulated (9), monotonous (10), heavy (11), clear (12),
noisy (13), quiet (14), sharp (15), fast (16), and slow (17). It

Algorithm 1 MIC-PCFS Algorithm
Input: S(f1, f2, ..., fNf

, sj), and δsj
Output: Sj

Rel // a set of defined relevant features for a
semantic primitive j

1: for j = 1 to Ns do begin
2: begin
3: for i = 1 to Nf do begin
4: calculate MICi,j for fi ;
5: if MICi,j ≥ δsj
6: stored fi to Frel ;
7: end ;
8: sorting Frel by the MICi,j value in descending order ;
9: fm = getF irstFeature(Frel);

10: do begin
11: fn = getNextFeature(Frel, fm);
12: if (fn <> null)
13: do begin
14: f temp

n = fn ;
15: if (MICm,n ≥MICn,j)
16: remove fn from Frel ;
17: fn = getNextFeature(Frel, f temp

n ) ;
18: else
19: fn = getNextFeature(Frel, fn) ;
20: end until fn == null ;
21: fm = getNextFeature(Frel, fm) ;
22: end until fm == null ;
23: Sj

Rel = Frel ;
24: end
25: end

is a two-stage procedure: the first part starts from line 3–8,
which calculates the MIC value for each acoustic feature
stores the relevant acoustic features into Frel on the basis of
the threshold value of a semantic primitive δsj , and sorts
these features in descending order on the basis of their MIC
values. The second part from line 9–22 focuses on removing
the redundancies among the relevant acoustic features.

IV. EXPERIMENT

This section aims to investigate whether MIC-PCFS
provides a promising framework for implementing a
three-layer model and improves the accuracy in tracking
continuous emotions in valence-arousal space. To this end,
we compare MIC-PCFS with two representative algorithms.
P-CCFS was first selected on the grounds that it was the first
attempt adopted for the task of implementing a three-layer
model for emotion recognition. P-CCFS explores the
N − best relevant acoustic features with their weights of
relevance greater than a threshold value. The sequential
floating forward selection algorithm (SFFS) was also
selected as it is one of the most promising feature selection
methods for wrappers. It is an iterative algorithm that
evaluates a selected subset and takes the combined effect of
features into account.
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Adaptive neuro-fuzzy inference systems (ANFISs) were
used in the three-layer model to estimate valence and
arousal. The ANFIS was selected on the grounds that it
could efficiently model nonlinear input and output relations
by incorporating human knowledge with a lower root mean
square error [29]. Correspondingly, the nature of perception
of speech emotion was fuzzy and vague [9]. Furthermore,
our three-layer model incorporated human knowledge from
evaluations of semantic primitives and emotion dimensions,
which involved nonlinear processing in accordance with
human emotion perception. More specifically, to estimate
continuous emotion, each of the semantic primitives in the
middle layer was predicted separately from the relevant
acoustic features using 17 FISs. Beyond that, the estimation
of emotion dimensions was done from 17 estimated
adjectives in the previous part by another two FISs.
Experimental results were reported by leave-one-speaker-out
cross-validation on the emotional corpora of Berlin Emo-DB
and CASIA.

The correlation coefficient (CC) and mean absolute error
(MAE) were calculated to assess the performance of the
estimation of semantic primitives and emotion dimensions.
For the values of a semantic primitive or emotion dimension
estimated by the system, i.e. Xn, and the corresponding
averaged values of a semantic primitive or emotion
dimension given by human estimators, i.e. Yn, the CC and
MAE are individually calculated as:

CC =

∑N
1

(
Xn −X

) (
Yn − Y

)√∑N
1

(
Xn −X

)2∑N
1

(
Yn − Y

)2 (3)

MAE =

∑N
1 |Xn − Yn|

N
(4)

where X and Y are the mean values of Xn and Yn,
respectively. In addition, N is the number of utterances of
each emotional corpus. Notably, the values of the CC trend
to 1 for a system’s estimation closer to human evaluations,
and the values of the MAE trend to 0 for a better
performance of system’s estimation.

Mean values of the CC and MAE for semantic primitives
and emotion dimensions of Berlin Emo-DB, averaged over
all speakers, are individually shown in Tables I and II,
respectively. As can be seen from Table I, MIC-PCFS
achieved a better estimation performance for most of the
semantic primitives with high CC values ranging between
0.759–0.964, and low MAE values ranged between
0.052–0.096. On the other hand, as shown in Table II,
MIC-PCFS also achieved a promising performance for
estimating valence and arousal as indicated by the highest
CC values of 0.849 and 0.970 and the lowest MAE values of
0.113 and 0.046 when compared with those obtained by
P-CCFS and SFFS. This closer estimation reveals that the
gain of MIC-PCFS over P-CCFS and SFFS is mainly due to
the former’s effectiveness on identifying both irrelevant and
redundant acoustic features.

TABLE I
COMPARISON OF THE AVERAGING CC AND MAE FOR SEMANTIC

PRIMITIVES OF BERLIN EMO-DB CORRESPONDING TO MIC-FS, P-CCFS,
AND SFFS USING A THREE-LAYER MODEL.

CC MAESemantic
Primitives MIC-PCFS P-CCFS SFFS MIC-PCFS P-CCFS SFFS
1 bright 0.840 0.801 0.844 0.092 0.105 0.092
2 dark 0.944 0.922 0.944 0.076 0.088 0.073
3 high 0.904 0.866 0.897 0.079 0.093 0.083
4 low 0.945 0.945 0.943 0.069 0.071 0.069
5 strong 0.932 0.895 0.930 0.075 0.093 0.071
6 weak 0.963 0.925 0.961 0.061 0.088 0.062
7 calm 0.948 0.910 0.927 0.064 0.084 0.075
8 unstable 0.932 0.860 0.912 0.067 0.093 0.074
9 well modulate 0.930 0.879 0.921 0.072 0.095 0.076
10 monotonous 0.922 0.891 0.909 0.068 0.073 0.070
11 heavy 0.759 0.775 0.754 0.096 0.092 0.093
12 clear 0.873 0.802 0.838 0.073 0.086 0.080
13 noisy 0.930 0.871 0.916 0.062 0.087 0.069
14 quiet 0.964 0.938 0.947 0.052 0.066 0.060
15 sharp 0.921 0.895 0.933 0.068 0.079 0.064
16 fast 0.856 0.776 0.812 0.074 0.091 0.086
17 slow 0.922 0.860 0.890 0.068 0.085 0.078

TABLE II
COMPARISON OF THE AVERAGING CC AND MAE FOR EMOTION

DIMENSIONS OF BERLIN EMO-DB CORRESPONDING TO MIC-FS,
P-CCFS, AND SFFS USING A THREE-LAYER MODEL.

CC MAEEmotion
Dimensions MIC-PCFS P-CCFS SFFS MIC-PCFS P-CCFS SFFS
Valence 0.849 0.821 0.814 0.113 0.121 0.116
Arousal 0.970 0.956 0.962 0.046 0.058 0.053

TABLE III
COMPARISON OF THE AVERAGING CC AND MAE FOR SEMANTIC

PRIMITIVES OF CASIA CORRESPONDING TO MIC-FS, P-CCFS, AND
SFFS USING A THREE-LAYER MODEL.

CC MAESemantic
Primitives MIC-PCFS P-CCFS SFFS MIC-PCFS P-CCFS SFFS
1 bright 0.798 0.663 0.537 0.120 0.150 0.180
2 dark 0.794 0.683 0.516 0.124 0.160 0.186
3 high 0.783 0.685 0.550 0.143 0.172 0.185
4 low 0.801 0.705 0.688 0.122 0.157 0.161
5 strong 0.748 0.693 0.498 0.146 0.158 0.181
6 weak 0.769 0.647 0.561 0.150 0.165 0.190
7 calm 0.817 0.623 0.346 0.123 0.185 0.217
8 unstable 0.867 0.716 0.691 0.107 0.145 0.152
9 well modulate 0.698 0.605 0.421 0.175 0.203 0.242
10 monotonous 0.525 0.505 0.315 0.206 0.199 0.233
11 heavy 0.649 0.706 0.549 0.171 0.141 0.190
12 clear 0.566 0.513 0.431 0.185 0.186 0.210
13 noisy 0.749 0.718 0.564 0.146 0.147 0.178
14 quiet 0.863 0.664 0.434 0.103 0.157 0.193
15 sharp 0.779 0.685 0.529 0.128 0.157 0.187
16 fast 0.807 0.778 0.609 0.117 0.130 0.158
17 slow 0.835 0.761 0.658 0.118 0.137 0.159

TABLE IV
COMPARISON OF THE AVERAGING CC AND MAE FOR EMOTION

DIMENSIONS OF CASIA CORRESPONDING TO MIC-FS, P-CCFS, AND
SFFS USING A THREE-LAYER MODEL.

CC MAEEmotion
Dimensions MIC-PCFS P-CCFS SFFS MIC-PCFS P-CCFS SFFS
Valence 0.510 0.488 0.470 0.160 0.169 0.175
Arousal 0.782 0.781 0.687 0.126 0.130 0.148
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In addition, Tables III and IV further depict the results of
averaged CC and MAE values for semantic primitives and
emotion dimensions of CASIA. It is clear from these tables
that MIC-PCFS consistently outperforms P-CCFS and SFFS
on estimation irrespective of semantic primitives or emotion
dimensions. Such findings again resonates with the
aforementioned fact that redundancies among features need
to be removed after defining the relevant acoustic features.
Moreover, compared with the algorithm’s performance with
Berlin Emo-DB, the results with CASIA were comparatively
lower. This is because Berlin Emo-DB contains emotional
utterances that are more typical and clear from actors or
actresses, while CASIA contains emotional utterances that
are more spontaneous, and do not sufficiently simulate
emotions in a natural or clear manner. Another reason might
that the Berlin Emo-DB has a large number of speakers (ten
actors), which might improve the generalization to different
speakers, however, CASIA has a small number of speakers
(four actors), and therefore, limiting the generalization of the
achieved performance.

Overall, the three-layer model implemented on the basis of
MIC-PCFS improved the estimation performance on valence
and arousal, resulting in both higher CC and smaller MAE
values, compared with the performances obtained by other
feature selection approaches and presenting comparable
results to human evaluators.

V. CONCLUSION

This study presented a novel acoustic feature selection
algorithm based on the maximal information coefficient and
an adapted concept of predominant correlation and
demonstrated that it is efficient to implement a three-layer
model for speech emotion recognition. Promising results on
estimation of emotion dimensions are reported over the
emotional corpora of Berlin Emo-DB and CASIA, and
outperformed those achieved by related feature selection
algorithms. This performance can advance the SER
accuracies. The main advantage of the proposed algorithm is
the fact that the maximal information coefficient could
capture a wide range of associations between a feature and
target and is well suited to human vague emotion perception
which may exist both functional and non-functional percepts.
Besides, the concept of an adopted predominant correlation
does a great contribution to eliminate the redundancy among
relevant features to improve the accuracy of emotion
estimation.
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