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Abstract—This paper proposes relevant phonetic-aware neural
acoustic models that leverage native Japanese speech and native
English speech to create improved automatic speech recogni-
tion (ASR) of Japanese-English speech. In order to accurately
transcribe Japanese-English speech in ASR, acoustic models
are needed that are specific to Japanese-English speech since
Japanese-English speech exhibits pronunciations that differ from
those of native English speech. The major problem is that
it is difficult to collect a lot of Japanese-English speech for
constructing acoustic models. Therefore, our motivation is to
efficiently leverage the significant amounts of native English and
native Japanese speech material available since Japanese-English
is definitely affected by both native English and native Japanese.
Our idea is to utilize them indirectly to enhance the phonetic-
awareness of Japanese-English acoustic models. It can be ex-
pected that the native English speech is effective in enhancing
the classification performance of English-like phonemes, while the
native Japanese speech is effective in enhancing the classification
performance of Japanese-like phonemes. In the proposed relevant
phonetic-aware neural acoustic models, this idea is implemented
by utilizing bottleneck features of native English and native
Japanese neural acoustic models. Our experiments construct the
relevant phonetic-aware neural acoustic models by utilizing 300
hours of Japanese-English speech, 1,500 hours of native Japanese
speech, and 900 hours of native English speech. We demonstrate
effectiveness of our proposal using evaluation data sets that
involve four levels of Japanese-English.

I. INTRODUCTION

The progress of globalization has increased the need to use
English as an official language for non-native speakers. For
example, in international meetings, foreigners communicate
each other through English. One problem is that foreigners
often cannot understand the English of someone from another
country. In order to support full communication, we need au-
tomatic speech recognition (ASR) that can transcribe English
speech into text. This paper focuses on improving the ASR
performance for the input of Japanese-English speech.

Recent ASR technologies have been dramatically improved
by deep learning technologies. In particular, neural acoustic
models have attained significant performance superiority com-
pared to Gaussian mixture model based methods [1], [2]. It
is reported that neural acoustic models offer substantial ASR
performance for practical systems if a lot of target domain

training data is available.
In order to accurately transcribe non-native speech, includ-

ing Japanese-English speech, ASR systems must be special-
ized to handle the target non-native speech domain since
the pronunciations of non-native speech differ from those of
native speech [3]–[6]. The main problem is that it is difficult
to collect adequate amounts of target non-native speech. In
particular, Japanese-English speech exhibits a wide range in
pronunciation style, from beginner level to professional level.
In fact, neural acoustic models trained using native English
speech are completely unsuitable for improving the ASR
performance of Japanese-English speech.

Our idea is to promote the phonetic-awareness of neural
acoustic models by indirectly utilizing native Japanese speech
and native English speech. It can be considered that phonemes
appearing in the native Japanese speech are relevant to those
that appear in beginner level Japanese-English. In the same
way, it can be considered that phonemes appearing in the
native English speech will be relevant to those found in
fluent Japanese-English. Therefore, we can expect that the
native English speech is effective in enhancing the classifi-
cation performance of English like phonemes, and the native
Japanese speech is effective in enhancing the classification
performance of Japanese like phonemes. Utilizing relevant
phonetic-awareness allows well-trained acoustic models to be
constructed from limited Japanese-English speech material.

In this paper, we propose relevant phonetic-aware neural
acoustic models for Japanese-English ASR. The proposal
leverages neural acoustic models that are individually con-
structed from native Japanese speech and native English
speech. The relevant phonetic-aware neural acoustic models
have two components; awareness extraction networks and a
classification network. In the awareness extraction networks,
the native Japanese and the native English neural acous-
tic models are used in converting input acoustic features
into relevant phonetic-aware features. The classification net-
work handles the relevant phonetic-aware features to estimate
phonemes.

The proposed method is closely related to neural acoustic
models with auxiliary features. In ASR, major auxiliary fea-
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tures have been speaker-awareness [7]–[9], noise-awareness
[10]–[12], reverberant-awareness [13], and distance-awareness
[14]. Phonetic-awareness is often used in speaker recognition
[15], spoken language identification [16], and voice activity
detection [17]. Different from the previous work, the proposal
utilizes multiple relevant phonetic-aware features extracted
from neural acoustic models for enhancing other neural acous-
tic models. In addition, the proposal is related to multilingual
neural acoustic models [18]–[21]. While multilingual neural
acoustic models jointly employ multilingual speech for con-
structing acoustic models, the proposal utilizes pre-trained
neural acoustic models for constructing target domain acoustic
models. This enables us to directly leverage relevant domain
knowledge.

For evaluation purposes, we create Japanese-English eval-
uation data sets that involve four levels of Japanese-English.
Tests that utilize 300 hours of Japanese-English speech, 1,500
hours of native Japanese speech, and 900 hours of native
English speech for constructing acoustic models demonstrate
that the proposal offers improved Japanese-English ASR per-
formance. To the best of our knowledge, this paper is the first
study on Japanese-English acoustic modeling that effectively
utilizes both native Japanese data and native English data.

This paper is organized as follows. Section 2 of this paper
describe neural acoustic models. The proposal is detailed in
Section 3. Section 4 describes our experiments. We conclude
in Section 5 with a brief summary.

II. NEURAL ACOUSTIC MODELS

This section describes neural acoustic models; they are often
used in deep neural network hidden Markov model (DNN-
HMM) hybrid ASR systems. In neural acoustic models, pho-
netic state sequence S = {s1, · · · , sT } is estimated from input
acoustic feature sequence X = {x1, · · · ,xT } in a frame-
by-frame manner. Phonetic state st ∈ {1, · · · ,K} represents
context-dependent phones, each of which corresponds to a
HMM state. The neural acoustic models define conditional
probability P (S|X,Θ) where Θ is the model parameter.

In neural acoustic models, frame-level input features are
often composed by stacking a currently-being-processed frame
and its left-right contexts. Predictive probabilities of phonetic
states in the t-th frame, ot, are given by:

ot = F(it;Θ), (1)

it = [x⊤
t−M , · · · ,x⊤

t , · · · ,x⊤
t+M ]⊤, (2)

where M denotes context size in the input layer, and F()
is a nonlinear transformational function based on DNNs
or unidirectional long short-term memory recurrent neural
networks (LSTM-RNNs). Unidirectional LSTM-RNNs can
automatically store previous long-range information in hidden
layers.

Given training data sets D = {(x1, s1), · · · , (x|D|, s|D|)}
which are forcibly aligned in a preliminary step, the parameter
can be optimized by minimizing the cross entropy between

Awareness extraction networks Classification networks

Fig. 1. Network structure of relevant phonetic-aware neural acoustic models.

reference and estimated probabilities:

Θ̂ = arg min−
|D|∑
t=1

K∑
k=1

ôt,k log ot,k, (3)

where ôt,k and ot,k are the reference probability and the
estimated probability of the k-th phonetic state in the t-th
frame, respectively.

III. RELEVANT PHONETIC-AWARE NEURAL ACOUSTIC
MODELS

This section details relevant phonetic-aware neural acoustic
models. The proposal indirectly utilizes neural acoustic models
that are individually constructed from native Japanese speech
and native English speech. The relevant phonetic-aware neural
acoustic models consist of two components; multiple aware-
ness extraction networks that can extract relevant phonetic-
aware features from acoustic features, and a classification
network that predicts posterior probability of each phonetic
state from the relevant phonetic-aware features.

We define the language uttered by a speaker and the mother
language of the speaker as L(o) and L(m), respectively. In ASR
of Japanese-English speech, L(o) means English, and L(m)

means Japanese. In addition, we define the following three
speech data sets.

• D(o): speech of L(o) uttered by native speakers of L(o).
• D(m): speech of L(m) uttered by native speakers of L(m).
• D(g): speech of L(o) uttered by native speakers of L(m).

In ASR of Japanese-English speech, D(o) is native English
speech, D(m) is native Japanese speech, and D(g) is Japanese-
English speech.

Fig. 1 shows the model structure of relevant phonetic-aware
neural acoustic models. Model parameter Θ corresponds to
{θ(o),θ(m),θ(g1),θ(g2)}. The networks are detailed in the
following subsections.

A. Awareness Extraction Networks

Awareness extraction networks are individually constructed
from D(o)，D(m), and D(g). To this end, we compose DNNs
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with a bottleneck layer which is an output layer of the
awareness extraction network. For the DNNs, a frame-level
input feature is composed by stacking the frame currently
being processed and its left-right contexts according to Eq.
(2). Posterior probabilities of the phonetic states in the t-th
frame are given by:

o
(o)
t = G(H(it;θ

(o)); δ(o)) ∈ RK(o)

, (4)

o
(m)
t = G(H(it;θ

(m)); δ(m)) ∈ RK(m)

, (5)

o
(g1)
t = G(H(it;θ

(g1)); δ(g1)) ∈ RK(g)

, (6)

where H() represents non-linear functions of the awareness
extraction network whose outputs correspond to relevant
phonetic-aware features. G() represents non-linear functions of
an additional network connected to the awareness extraction
network that is used only for training. θ(o), θ(m), and θ(g1) are
the model parameters of the awareness extraction network,
and δ(o), δ(m), and δ(g1) are the model parameters of the
additional network. K(o), K(m), and K(g) are the number of
phonetic states in D(o)，D(m), and D(g), respectively. Each
model parameter can be trained by optimizing the following
cross entropy loss function:

θ̂(o), δ̂(o) = arg min
θ(o),δ(o)

−
|D(o)|∑
t=1

K(o)∑
k=1

ô
(o)
t,k log o

(o)
t,k, (7)

θ̂(m), δ̂(m) = arg min
θ(m),δ(m)

−
|D(m)|∑
t=1

K(m)∑
k=1

ô
(m)
t,k log o

(m)
t,k, (8)

θ̂(g1), δ̂(g1) = arg min
θ(g1),δ(g1)

−
|D(g)|∑
t=1

K(g)∑
k=1

ô
(g1)
t,k log o

(g1)
t,k , (9)

where ô
(o)
t,k , ô(m)

t,k , and ô
(g1)
t,k are the reference probabilities, and

o
(o)
t,k , o(m)

t,k , and o
(g1)
t,k are the estimated probabilities of the k-th

phonetic state in the t-th frame, respectively. After optimiza-
tion, θ̂(o)

t,k , θ̂(m)
t,k , and θ̂

(g1)
t,k are only utilized for constructing the

classification network.

B. Classification Network

The classification network takes, as input, multiple relevant
phonetic-aware features extracted from the awareness extrac-
tion networks. The t-th input of the classification network, ut,
is defined as:

ut = [H(it; θ̂
(o))⊤,H(it; θ̂

(m))⊤,H(it; θ̂
(g1))⊤]⊤. (10)

The posterior probabilities of the phonetic states in the t-th
frame, o(g2)

t , are given by:

o
(g2)
t = F(ut;θ

(g2)) ∈ RK(g)

, (11)

where θ(g2) is the model parameter of the classification
network. F() is a nonlinear transformational function based
on DNNs or unidirectional LSTM-RNNs. In order to optimize
the model parameter of the classification network, only D(g) is

TABLE I
EVALUATION DATA SETS.

Proficiency level Category # of words # of speakers
Level A Beginner English 18,439 8
Level B Traveler English 62,357 25
Level C Daily English 49,819 20
Level D Professional English 17,661 7

TABLE II
TRAINING DATA SETS.

hours # of phonetic states
Native English 885.9 2,601
Native Japanese 1,496.9 3,072
Japansese-English 311.5 2,601

necessary. The model parameter can be trained by optimizing
the following cross entropy loss function:

θ̂(g2) = arg min
θ(g2)

−
|D(g)|∑
t=1

K(g)∑
k=1

o
(g2)
t,k log o

(g2)
t,k , (12)

where ô
(g2)
t,k is the reference probability, and o

(g2)
t,k is the

estimated probability of the k-th phonetic state in the t-th
frame.

IV. EXPERIMENTS

A. Setups

In our experiments, we prepared Japanese-English eval-
uation data sets that included short read speech segments
uttered by 60 speakers. The data sets can be categorized into
four proficiency levels; beginner level, traveler level, daily
level, professional level. The details are shown in Table 1. In
addition, we prepared native English training data sets, native
Japanese training data sets, and Japanese-English training
data sets for constructing the acoustic models. Each data set
included various tasks and various speakers. In order to utilize
them for neural acoustic models, the phonetic state sequences
were annotated by force alignment using GMM-HMMs which
were individually constructed from the training sets. We con-
structed a Japanese GMM-HMM from the Japanese speech
and an English GMM-HMM from the both Japanese-English
and native English speech sets. The training data sets are
detailed in Table 2.

Our neural acoustic models used 38 dimensional mel-
frequency cepstrum coefficients (12MFCC, 12∆MFCC,
12∆∆MFCC, ∆power and ∆∆power) as acoustic features;
they were extracted using 20 msec windows shifted by 10
msec. The input features, i.e. Eq. (2), were 418 dimensional
acoustic features formed by stacking the current processed
frame and its ±5 left-right context. For the evaluation, we
constructed following acoustic models.

• Baseline neural acoustic models: We constructed DNN
and LSTM-RNN acoustic models. BASE-DNN had 8
hidden layers with 2,048 sigmoid activation units. BASE-
LSTM had 2 hidden layers with 2,048 sigmoid activa-
tion units and 2 hidden layers with 1,024 LSTM units.
We trained them by using Japanese-English speech and
native English speech in isolation, and both together.
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TABLE III
EXPERIMENTAL RESULTS IN TERMS OF WORD ERROR RATE (%).

Training data for Training data for Proficiency level
Methods awareness extraction networks classification network A B C D

(1). BASE-DNN - Japanese-English 18.7 14.4 14.8 15.6
(2). BASE-DNN - Native English 75.0 53.8 49.6 27.8
(3). BASE-DNN - Japanese-English, Native English 21.9 16.4 17.5 15.2
(4). RPA-DNN Japanese-English, Native Japanese Japanese-English 17.3 13.3 13.9 14.3
(5). RPA-DNN Japanese-English, Native English Japanese-English 17.1 13.0 13.8 14.5
(6). RPA-DNN Japanese-English, Native Japanese, Native English Japanese-English 16.6 12.7 13.5 14.0
(7). BASE-LSTM - Japanese-English 17.0 14.8 15.7 16.5
(8). BASE-LSTM - Native English 66.4 48.7 45.7 27.7
(9). BASE-LSTM - Japanese-English, Native English 19.6 16.0 16.3 16.2
(10). RPA-LSTM Japanese-English, Native Japanese Japanese-English 16.2 14.3 15.2 15.4
(11). RPA-LSTM Japanese-English, Native English Japanese-English 16.0 14.0 15.1 15.7
(12). RPA-LSTM Japanese-English, Native Japanese, Native English Japanese-English 15.4 13.7 14.5 15.0
(13). BASE-DNN+LSTM - Japanese-English 15.0 12.8 13.6 14.5
(14). RPA-DNN+LSTM Japanese-English, Native Japanese, Native English Japanese-English 13.9 11.9 12.6 13.5

For optimization, we used discriminative pre-training
to construct an initial network and then fine-tuned it
using mini-batch stochastic gradient descent (MB-SGD).
The validation set was used for early stopping. Note
that BASE-DNN+LSTM is the posterior combination of
BASE-DNN and BASE-LSTM.

• Relevant phonetic-aware neural acoustic models: For
awareness extraction networks, we constructed DNN
acoustic models with 5 hidden layers. The fourth hidden
layer was a bottleneck layer whose unit size was set
to 64, and the other hidden layers had 1,024 sigmoid
units. We constructed them from native English, native
Japanese, and Japanese-English speech. As the classi-
fication network, we examined DNN and LSTM-RNN
acoustic models. RPA-DNN had 4 hidden layers with
2048 sigmoid units. RPA-LSTM had 2 hidden layers
with 1,024 LSTM units. In order to train both the aware-
ness extraction networks and the classification network,
we used discriminative pre-training to construct the initial
networks and then fine-tuned them using MB-SGD. The
validation set was used for early stopping. Note that RPA-
DNN+LSTM is the posterior combination of RPA-DNN
and RPA-LSTM.

The baseline neural acoustic models are regarded as relevant
phonetic-aware neural acoustic models without awareness ex-
traction networks.

For evaluating ASR performance, we prepared a WFST-
based ASR decoder [22]. We constructed 3-gram language
models with 1M words taken from English Web texts and
transcribed texts of spontaneous speech.

B. Results

Table 3 shows the results in terms of word error rate with
respect to proficiency levels. Lines (1)–(3) are BASE-DNN,
lines (4)–(6) are RPA-DNN, lines (7)–(9) are BASE-LSTM,
and lines (10)–(12) are RPA-LSTM. In addition, line (13)
plots the posterior combination results of combining line (1)
with line (7), while line (14) shows the posterior combination
results of combining line (6) with line (12).

First, in lines (1) and (7), BASE-LSTM trained using
Japanese-English was superior to BASE-DNN trained using
Japanese-English for high proficiency levels, while inferior
for low proficiency levels. This indicates that LSTM-RNNs
and DNNs have different strengths for Japanese-English ASR.
In lines (1)–(3) and (7)–(9), baseline neural acoustic models
trained using Japanese-English outperformed those trained
using native English. In fact, the baseline models trained
using native English were not suitable for the low profi-
ciency level. In addition, baseline models trained using both
Japanese-English and native English speech were inferior to
those trained using only native Japanese-English for the low
proficiency level. These results confirm that it is difficult to
directly utilize native English speech for improving Japanese-
English ASR performance.

Next, with regard to lines (4)–(6) and (10)–(12), relevant
phonetic-aware acoustic models that indirectly leveraged na-
tive English and native Japanese outperformed the baseline
models. RPA-DNN outperformed BASE-DNN constructed us-
ing Japanese-English, and RPA-LSTM outperformed BASE-
LSTM constructed using Japanese-English. In particular, the
relevant phonetic-awareness of native Japanese was effective
for low proficiency level speakers while that of native En-
glish was effective for high proficiency level speakers. In
addition, we could achieve useful performance improvements
by utilizing both native English speech and native Japanese
speech simultaneously. This indicates that both types of rel-
evant phonetic-awareness complement each other. The best
results were obtained by RPA-DNN+LSTM which yielded
statistically significant performance improvements (p < 0.05)
compared to BASE-DNN+LSTM for all proficiency levels.

V. CONCLUSIONS

In this paper, relevant phonetic aware neural acoustic models
were proposed. Our proposed method achieved to efficiently
leverage native Japanese speech and native English speech
for improving Japanese-English ASR. ASR Evaluation using
four proficiency level speakers showed the proposed method
yielded significant performance improvement.
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