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Abstract— Adaptation of deep neural network (DNN) based 

language identification models is still a challenging area of 

research. Recently, state-of-the-art approaches to short duration 

language identification task have made use of bidirectional long 

short-term memory (BLSTM) recurrent neural network (RNN) 

language identification models. Although this enables the 

effective modelling of sequential information, significant 

mismatch due to different conditions such as speaker, channel, 

duration and background noise between training and testing 

data still exists. An adaptation of BLSTM systems can help to 

reduce such mismatches between training and testing data. In 

this paper, a transformation to the existing BLSTM layer is 

proposed, using learning of a second order factorization matrix 

called a compensation layer. The condition-dependent 

parameters of the factorization matrix are estimated to adapt the 

BLSTM layer weights.  Experiments on the AP17-OLR database 

show that utterance level adaptation helps to achieve relative 

improvements of 28% in terms of Cavg over a traditional 

BLSTM for utterances of ‘1s’ duration. 

I. INTRODUCTION 

Mismatch between training and testing data is a long-standing 

problem in language identification [1-3]. In practice, it is 

common that sufficient data for long duration utterances are 

available for system training. However, it is important to note 

that test utterances may be significantly smaller (~1s). In 

language identification, these short duration utterances are the 

most affected due to mismatches in recordings such as 

speaker, channel and background noise [4]. Although there 

are a number of ways to enhance the noise robustness of 

speech features [1, 5, 6], practical systems still fail to produce 

state-of-the-art performance if the training and testing 

environments do not match acoustically [1]. A language 

model trained with sufficient data leads to enhanced language 

discriminating ability with a better representation of the 

language’s space. Previous work provides evidence for 

mismatch compensation, including Gaussian Mixture Models 

(GMMs) [2], the total variability transform (i-vector) 

approach [7] and techniques such as Probabilistic Linear 

discriminant analysis (GPLDA) [8], which was designed 

specifically for channel mismatch conditions. However, since 

most of these approaches are based on feature statistics, 

testing with short duration utterances tends to exhibit higher 

intra-class variability with lower inter-class distance. 

Consequently, the system performance is significantly 

degraded [4].  

    On the other hand, deep neural network (DNN) based 

approaches, specifically bidirectional long-short term memory 

(BLSTM) recurrent neural networks (RNNs) have 

outperformed state-of-the-art approaches and have proven to 

be effective for short duration language identification [4, 9]. 

Although, this elegant framework achieves superior 

performance by capturing sequential information of the input 

features, these are also vulnerable to mismatch conditions that 

lead to significant performance degradations, similar to all 

other prevailing machine learning approaches. This issue can 

be mitigated with adaptation techniques that adapt an existing 

model to match better testing conditions [10, 11].  

    Although there are very few works on the adaptation of 

language identification models, many efforts have been 

proposed for speaker adaptation in speech recognition 

systems [12-14]. The most common way of adapting DNNs is 

to introduce a linear layer to the input, hidden or output  layer 

in the existing model [15]. Some researchers have also 

invested great effort in combining DNNs with GMMs in the 

training of tandem systems [16]. In tandem systems, DNNs 

are used to extract bottleneck features (where the features 

form a narrow hidden layer) in order to train GMM models. 

Instead of model adaptation,  input features have been adapted 

to train DNNs for various applications [8, 17].  Besides these 

techniques, speaker aware training is one of the most popular 

adaptation techniques in speech recognition systems [12].  In 

this approach, speaker information is provided to the network 

in order to perform speaker normalization in the adaptation 

stage. The adaptation of DNNs commonly introduces a huge 

number of parameters, leading to overfitting. However, 

subspace method [18, 19] based adaptation is only performed 

on a subset of model parameters, which avoids overfitting. 

Further, regularization based adaptation methods minimize 

the distance between training and testing data by training the 

DNN with an additional error [20]. 

     In our previous work [11],  we address the issue of 

mismatch compensation for short duration language 

identification by introducing a factorized hidden variability 

subspace (FHVS) to adapt the existing DNN framework, and 

showed that significant gains can be achieved over existing 

adaptation techniques. In contrast to existing adaptation 

techniques, we introduced a transformation matrix called the 

hidden variability subspace (HVS) to capture the variability 

between training and testing utterances. The factorization was 
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then conducted prior to the subspace learning using linear 

factorization methods such as linear discriminant analysis 

(LDA) or singular value decomposition (SVD). Although 

these factorization techniques provide slight improvements 

over several other adaptation techniques, these classic linear 

algebraic methods may not be so effective when embedded in 

a large-scale nonlinear model. For this reason, in the current 

work we propose a learning scheme for the factorized model 

adaptation using second order information (Section III) to 

perform mismatch compensation.  This framework is 

introduced as a novel layer called the compensation layer, 

(Section II) which can compensate for the mismatch in the 

existing BLSTM language model.  

II. ADAPTATION OF BLSTMS WITH UTTERANCE 

REPRESENTATIONS 

In language identification, bidirectional long short-term 

memory (BLSTM) recurrent neural networks (RNNs) are 

used to generate framewise predictions as in [4]. Unlike 

traditional LSTM networks, the underlying principle of 

BLSTMs can be thought of as capturing the temporal 

information of input features in both backward and forward 

directions. A BLSTM therefore has access to both past and 

future information in a speech sequence in order to classify a 

given speech utterance to a specific language. For a length 𝑇 

input vector sequence 𝒙𝒕 = [𝑥1, 𝑥2, … , 𝑥𝑇] , a conventional 

BLSTM output 𝒚𝒕 = [𝑦1, 𝑦2 , … , 𝑦𝑇] can be computed as 

 𝒚𝒕 = 𝑊ℎ⃗⃗ 𝑦 �⃗⃗�
 
𝒕 +𝑊ℎ⃗⃗⃖𝑦 �⃗⃗⃖�𝒕 (1) 

 �⃗⃗� 𝒕 =  ℋ(𝑊𝑥ℎ⃗⃗ 𝒙𝒕 +𝑊ℎ⃗⃗ ℎ⃗⃗ �⃗⃗�
 
𝒕−𝟏 + 𝒃�⃗⃗� ) (2) 

 �⃗⃗⃖�𝒕 =  ℋ(𝑊𝑥ℎ⃗⃗⃖𝒙𝒕 +𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ �⃗⃗⃖�𝒕−𝟏 + 𝒃�⃗⃗⃖�) (3) 

where �⃗⃗� 𝒕 and  �⃗⃗⃖�𝒕 are the forward and backward sequences of 

the BLSTM hidden states at time 𝑡 respectively. 𝑊 and 𝒃 are 

the weights and biases of the BLSTM layer. The recurrent 

hidden layer function ℋ is derived as in [21] for each LSTM 

memory block in conventional manner. After the BLSTM 

layer, global average pooling is conducted over the whole 

sequence 𝑇  to transform frame level features to utterance 

level features yielding the BLSTM output 𝒌 as, 

 𝒌 =  ∑ 𝒚𝒕
∀𝑡 ∈ 𝑇 

 (4) 

This output 𝒌 is then given to the next layer (a softmax layer 

in this paper) to perform the language classification task. In 

order to compensate for mismatch in this basic model, we 

introduce a novel compensation layer in between this output 

𝒌 and the final softmax layer.  

A. Proposed compensation layer: a joint nonlinear 

adaptation learning scheme  

    In this work, we propose adapting the obtained model 

output of the BLSTM 𝒌, by introducing a nonlinear learning 

scheme that uses second order utterance aware information 

(Section III). This facilitates learning more abstract 

information with the aim of compensating mismatch. An 

utterance dependent (UD) feature transformation is employed 

to 𝒌 in equation (4) as, 

 
Fig. 1 Proposed second order factorized compensation layer for adaptation of BLSTM layer. The marker shapes represent the 

instance labels and colours represent the original domains. Both training and testing domains are matched together using the 

unsupervised domain invariant transformation T (low variability subspace) where T is trained using i-vectors. In the 

compensation layer the metric 𝑀 and 𝑉 defined the subspace and second order factorization matrix respectively which are 

learned to minimize the mismatch and to maximize the discriminative power between samples in the BLSTM network. 

Domain distributions are indicated by dashed ellipsoids. Our learning scheme non-linearly identifies the transformation 𝑀 

and 𝑉. This figure is best viewed in colour. 
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 𝒌′ =  𝒌⊙ 𝑪 (5) 

where ⊙  denotes elementwise multiplication, and 𝑪  is the 

proposed mismatch compensation layer with nonlinearity ℋ 

(‘tanh’ in this paper),  

 𝑪 =  ℋ(𝝎𝑻 𝑉𝝎 +𝑀𝝎+  𝝋 ) (6) 

which is constructed from subspace 𝑀 and the factorization 

matrix 𝑉, and where 𝝎 is the utterance level feature vector, an 

i-vector in this work. This adapted feature representation 𝒌′ is 

passed to the next layer in the adaptation stage instead of 𝒌. 

Therefore, during the adaptation process, the 𝑀  and 𝑉 

matrices are trained to capture the information of the 

utterance mismatch in the pretrained model. It is worth 

highlighting that unlike previous work, the factorization 

matrix 𝑉 is learned automatically in this learning scheme, and 

is also able to capture the second order information that is 

highly significant to the mismatch conditions. This provides a 

unified and efficient way to capture the mismatch information 

without any constraints.  

III. CONSTRUCTION OF SECOND ORDER FACTORIZATION 

MODEL  

DNNs have proven highly effective at classification tasks 

with advances in recognition accuracy when the features and 

classifier are jointly learned [4]. In this end-to-end process, 

the parameters (weights) of each layer act as feature 

transformation of the output of proceeding one, when stacking 

multiple layers. Even though these layer outputs are followed 

by nonlinearities, the computation of such linear combinations 

can be thought as extracting first-order statistics for the input 

features [22]. Therefore, it can be argued that second order 

statistics such as covariances may not be directly extracted 

using such networks. However,  the usefulness of higher order 

information in neural networks learning has been shown in 

[23]. Several studies have been conducted on image 

classification tasks, extracting covariance based features [22, 

24, 25], which also showed the effectiveness of second order 

statistics. Covariance plays an important role in data 

mismatch compensation [5], similar to the above-mentioned 

speech application, and many features can be found that are 

extracted based on covariance.  

In our previous work we showed the effectiveness of 

employing an adaptation layer within a BLSTM framework 

using classic covariance based transformations such as SVD 

and LDA, applied to the low variability feature space (i-

vectors). The transformed features increased the robustness of 

the feature space and could also be used as a factorization 

technique to reduce the number of dimensions. However, 

these factorization techniques are linear and applying such 

transformations on a large nonlinear network may not be as 

effective. Therefore, in this work, we train a unified second 

order nonlinear factorization model within the network as part 

of the adaptation process.  

A. Proposed learning of second order information  

Learning the second order factorization model is quite 

challenging due to large number of weight parameters. In this 

work, we construct the factorization matrix 𝑉 and force it to 

learn the covariance information using a second order 

function of the input vector. The main intuition behind second 

order factorization is to capture the covariance information 

between the feature vector dimensions. This is a similar idea 

to that conveyed by the conventional linear factorization 

algorithms of SVD and LDA.  We argue that this second 

order factorization facilitates a better learning of the mismatch 

feature space based on second order statistics, empowering 

feature separability in individual neurons. We learned the 

subspace 𝑀 in the standard form [10]. As shown in Fig. 2, the 

output 𝑧 of a single neuron in the compensation layer 𝑪, for 

an 𝑛 -dimentional input feature vector 𝝎 = [𝜔1, 𝜔2, … , 𝜔𝑛] 
can be computed as 

 𝑧 =  𝑧𝑚 + 𝑧𝑣 +  𝜓 (7) 

where 𝑧𝑚 , 𝑧𝑣 are subspace output and second order output for 

a single neuron respectively. The 𝜓  denotes the bias for the 

same neuron. Equation (7) can be further expanded as  

 

𝑧 =  ∑𝑚𝑖𝜔𝑖  

𝑛

𝑖=1

+ ∑∑𝑣𝑖𝑗𝜔𝑖𝜔𝑗

𝑛

𝑗=𝑖

𝑛

𝑖=1

+  ψ (8) 

where 𝑚𝑖  and 𝑣𝑖𝑗  are the weights of the subspace 𝑀  and 

factorization matrix 𝑉 respectively. 𝜓 represents the bias for 

the neuron. Further, 𝜔𝑖𝜔𝑗  are elements of the outer product of 

feature vector 𝝎. 

The layer optimization can be formulated for the adaptation 

network output ℋ(. )  in the following manner. The weight 

parameters 𝑣𝑖𝑗 , 𝑚𝑖  and 𝜓 can be updated using the gradient 

decent optimization method for a training set with inputs 𝜔 =
 {𝜔1, 𝜔2… ,𝜔𝑢 , … }  and outputs  𝑜 =  {𝑜1, 𝑜2… , 𝑜𝑢, … } , 

where gradients can be calculated as 

 
𝜕𝐸

𝜕𝑚𝑖
= (ℋ(𝜔𝑢) − 𝑦𝑢)

𝜕𝜎

𝜕𝜔
𝜔𝑖  (9) 

 
Fig. 2 Joint nonlinear adaptation learning scheme of 

compensation layer for a neuron. The 𝒎 and 𝒗 are the 

weights of subspace 𝑀 and second order factorization 

matrix 𝑉 respectively for a given input feature vector 𝝎. 

  
𝜔1 

𝜔2 

𝜔𝑛 

𝜔1 𝜔2 𝜔𝑛 . . .

𝜔1𝜔1 

 
𝜔1𝜔2 

 

𝜔2𝜔2 

 

𝜔𝑛𝜔𝑛  

 

𝜔𝑛𝜔2 

 

𝜔𝑛𝜔1 

 

. . .

∑  𝑚1 
𝑚2 𝑚𝑛  

𝑣1𝑛  

𝑣𝑛2 

𝑣𝑛𝑛  

ᵠ 

z 
∑  + 

Output

bias

𝑧𝑚  

𝑧𝑣  

Second order 
model weights

Subspace weights

1442

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



 
𝜕𝐸

𝜕𝑣𝑖𝑗
= (ℋ(𝜔𝑢) − 𝑦𝑢)

𝜕𝜎

𝜕𝜔
𝜔𝑖𝜔𝑗 (10) 

 
𝜕𝐸

𝜕ψ
=  (ℋ(𝜔𝑢) − 𝑦𝑢)

𝜕𝜎

𝜕𝜔
 (11) 

Therefore, this second order framework can be trained 

similarly to the standard approach. However, it must be noted 

that the number of training parameters in the second order 

factorization model is 𝑎 =  𝑛(𝑛 + 1)/2, while there are only 

𝑛  first order parameter𝑠. Furthermore, it is expected that this 

second order model contains highly correlated parameters due 

to the consideration of the outer product and higher 

dimensionality of the feature vectors. 

B. Low-rank matrix factorization 

    Low-rank factorization is used to form an abstract 

representation of the second order information and to reduce 

the number of parameters and by reducing the training 

complexity. In the training process, low-rank factorization 

ensures that there is minimal loss, thereby generally reducing 

the feature dimensionality as shown in Fig. 3. Also, by 

discarding features that correspond to covariances that are not 

relevant to classification/noise, this facilitates generalization 

of the input feature vectors. 

   For a 𝑑-dimensional layer, it can be seen that 𝑛 ×  𝑑 and 

𝑎 ×  𝑑  parameters exist for 𝑀  and 𝑉  matrices respectively, 

where 𝑎 =  𝑛(𝑛 + 1)/2 . The two matrices 𝑀  and 𝑉  were 

introduced in section III and illustrated in Fig. 2. In this paper 

we aim to represent the weight matrix 𝑉 as a low-rank matrix 

as shown in Fig. 3. If 𝑉 has rank 𝑟, then as in [26] there exist 

a factorization 𝑉 = 𝑃 × 𝑄  where 𝑃  and 𝑄  are full rank 

matrices of size 𝑎 × 𝑟  and 𝑟 × 𝑑  respectively. It must be 

noted that  this decomposition allows the single large matrix 

𝑉 to be implemented as two matrices 𝑃 and  𝑄 without any 

non-linearity between them using a much lower number of 

parameters in the second order model in the compensation 

layer. To satisfy the requirement of lower number of 

parameters than the original layer, 𝑟(𝑎 + 𝑑) <  𝑎𝑑  we can 

select an appropriate parameter 𝑟. In the experimental Section 

V, several low rank factorization matrix experiments are run 

using different ranks, as well as with other constraints such as 

symmetricity and diagonality to the weight matrices.  

IV. FEATURE EXTRACTION AND EXPERIMENTAL SETUP 

Experiments are conducted on AP17-OLR database [27] 

and Fig. 4 depicts the complete experimental setup. This 

database is chosen for two main reasons. In order to test our 

proposed hypothesis, the experimental data should come from 

different mismatch conditions, and include short duration 

utterances. AP17-OLR dataset satisfies both of these 

conditions, as it contains a large number of utterances for 

training and testing purposes. The dataset contains 10 

different languages developed for short duration language 

identification tasks. The test data has 3 different duration 

conditions of ‘1s’, ‘3s’ and ‘all’, where each subset contain 

17964, 16404 and 17964 utterances respectively. Additionally, 

this database utilizes data from two different recording 

conditions: clean and noisy environmental conditions. In this 

work, three languages that were recorded in both above 

conditions (Japanese, Russian and Korean) are designated as 

‘mismatched’, whereas all other languages are ‘matched’. 

Each language contains around 10 hours of training data 

 
Fig. 3 Schematic of low rank matrix factorization of 

the second order model. 
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Fig. 4 Language identification framework for use 

compensation layer for adaptation of BLSTM network. 

The front-end feature extraction of BNF and i-vectors are 

shown in bottom followed by Stage 1 pre training and 

Stage 2 adaptation process. 
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sampled at 16kHz. Since all the utterances used for system 

training and testing are short duration utterances, voice 

activity detection was not employed in the frontend feature 

extraction process.   

A. Bottleneck and i-vector feature extraction 

    BNF features were extracted to train the BLSTM model in 

Stage 1. The BNF extraction is based on a time-delay neural 

network (TDNN) [27] phonotactic model that was trained on 

the THCHS30 database. The 40-dimensional raw Mel-filter 

bank coefficients with a symmetric 4-frame window are given 

to TDNN as input features. The TDNN has 6 hidden layers 

and uses a p-norm activation function. The TDNN layers are 

set to be 2048 neurons except for the last hidden layer which 

only contains 256 units. 

     In Stage 2, the low variability feature space was derived 

using i-vectors [7] and the covariance statistics were learned 

during the joint nonlinear adaptation learning scheme (Section 

II A) for these i-vector elements. The universal background 

model containing 2048 Gaussians is trained with 13-

dimensional Mel-frequency cepstral coefficients (MFCC) 

features using 25ms window and 10ms frame shift. The 

extracted i-vectors contain 400 dimensions. 

B. Model pre training and adaptation 

    As described in Section II, the backend is a simple BLSTM 

network with a single hidden layer followed by global 

average pooling and a classification softmax layer. The 

BLSTM layer contains 1024 neurons for each forward and 

backward layer with the total of 2048 while the softmax layer 

has only 10 (the number of languages). A global average 

pooling layer averages frame level features to utterance level 

features as in equation (4). Training is carried out for ‘1s’ 

duration utterances with truncated backpropagation through 

time.  

    The initial model in Stage 1 (shown in Fig. 4) is first 

trained with bottleneck features (BNF) that are extracted as 

explained in Section III A. In the adaptation process in Stage 

2 the second order factorization matrix of 𝑉  and subspace 

matrix 𝑀  is learned after fixing the initial model weight 

parameters using extracted i-vectors. Finally, classification is 

conducted for the adapted system using both BNF and i-

vectors for the test utterances in the testing phase.  

V. FEATURE ANALYSIS 

A. Comparison of ‘matched’ and ‘mismatched’ feature 

spaces 

     First, the feature discriminability of ‘matched’ and 

‘mismatched’ languages was investigated using t-distributed 

stochastic neighbor embedding (t-SNE) [28] scatter plots (Fig. 

5). The t-SNE is a data visualization technique particularly 

well suited for dimensionality reduction of higher dimension 

embedding data. This method maps similar and dissimilar 

points in a higher dimensional space to near and distant points 

respectively in feature visualizing space (two-dimensional in 

this case). In this paper, t-SNE scatter plots have been used to 

illustrate the feature space of the ‘Russian’ language (a 

‘mismatch’ language) for training and testing data. The 2048-

 
Fig. 5 t-SNE scatter plots of features from mismatch languages before and after adaptation. (a) and (b) compare the training 

and testing data from the Russian language for 1s duration utterances, before and after adaptation. (c) and (d) show the test 

features for all three mismatch languages (Japanese, Russian, Korean) for ‘1s’ duration utterances, before and after 

adaptation. 

(a) (b)

(c) (d)
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dimensional feature vectors 𝒌 and 𝒌′ from equations (4) and 

(5) (before and after the adaptation respectively) were 

extracted from the adapted model. The effectiveness of the 

mismatch adaptation process can be visualised in Fig. 5(a) 

and Fig. 5(b). The adaptation makes the training and testing 

data more similar where the mismatch is comparatively 

reduced, i.e. for the Russian language, Fig. 5(b) testing data is 

surrounded by training data and this may leads to a better 

classification compared to Fig. 5(a). Further, it is interesting 

to see that the training data (cyan) is more tightly clustered in 

the adapted feature space in Fig. 5(b), which is believed to be 

due to utterance level information in the i-vectors that can 

relate specifically to individual speakers. In particular, there 

are 24 speakers who speaks Russian language and we can see 

there are 24 separate clusters.  To validate the observations, 

the J-measure is obtained [4].  The J-measure is the ratio 

between inter-class scatter to intra-class scatter, and the larger 

the value of the J-measure, the higher the mismatch in the 

feature space. In this instance, the training and testing data are 

considered as two separate classes. 

    The resulting J-measure values of 0.92 and 0.91 before and 

after the adaptation for the Russian language demonstrate that 

there is a lower mismatch in the adapted feature space 

compared to the original BLSTM feature output. Likewise, 

the J-measure was calculated for the other languages 

individually. These results are not presented here, though it is 

worth highlighting that, while all the languages showed an 

improvement in J-measure, the highest improvements were 

gained in Japanese, Korean and Russian languages. This 

suggests that the adaptation of the compensation layer is more 

effective when there is a channel mismatch between training 

and testing data.  

    Table 1 gives the performance comparison for a standard 

BLSTM system and the proposed system using a 

compensation layer for the adaptation It is clear that the 

proposed system has significant relative improvement of 

around 35% for ‘1s’ duration utterances. Additionally, this 

improvement is highly significant for ‘mismatched’ languages 

compared to ‘matched’ languages. 

B. Feature comparison of BLSTM output before and after 

mismatch compensation  

    For this study, we aim to illustrate the language 

discrimination capabilities of the ‘1s’ duration testing data for 

‘mismatch’ languages before and after the adaptation process. 

Similar to the above analysis the t-SNE scatter plots of feature 

vectors before (𝒌)  and after (𝒌′) the adaptation are analyzed. 

Fig. 5(c) and 5(d) shows the effectiveness of language 

separability between the testing data language classes before 

and after adaptation. Further, this shows that there is a 

significant improvement in separability in the adapted space 

compared to unadapted. To validate these observations, 

similar to above task the J-measure was computed for each 

feature type. In this case, it can be argued that the larger the 

value of J-measure, the higher the separability between 

languages. The calculated J-measure is highest for the adapted 

feature space with an improvement of 1.69 to 1.71. Fig. 6 

shows the individual performance for each language in terms 

of identification accuracy for the BLSTM and proposed 

systems. The mismatched languages again show the trend of 

having the higher improvements compared to the matched 

languages.     

VI. LANGUAGE IDENTIFICATION EVALUATIONS  

    For all language evaluation tasks two evaluation metrics of 

average cost (Cavg) and equal error rate (EER) were used, as 

originally proposed in AP17-OLR database evaluation plan 

[27].  First, we explore the behavior of the compensation 

layer with the second order low-rank factorization model and 

find an appropriate choice of rank 𝑟 (Section III B), which is 

required for the adaptation process. The full rank second order 

model contains  (400 × 401)/2 × 2048 ~164M  parameters. 

Consequently, these experiments are hard to be run because of 

computational cost associated with this large number of 

parameters. In the low-rank second order factorization 

experiments we replace the above matrix with two matrices, 

one of size (400 × 401)/2 × 𝑟  and other of size 𝑟 ×  2048 

where 𝑟 ≤ 100  attaining significantly lower number of 

parameters than before. Table 2 shows the Cavg and EER for 

different choices of rank 𝑟, and the percentage reduction in 

parameters compared to a full rank second order model.  

Table 1. Performance of the proposed system compared to 

a BLSTM system for AP17-OLR ‘1s’ duration for 

matched and mismatched conditions. 

Condition 
Cavg [%] Improvement 

[%] BLSTM Proposed 

1 Matched 9.23 7.33 20.59 

2 Mismatched 14.97 9.81 34.47 

 
Overall  12.14 8.75 27.92 

 
 

Fig. 6 System performance comparison of BLSTM and 

proposed systems for AP17-OLR ‘1s’ condition in terms 

of accuracy for each language. 
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    The trend is similar in the ‘1s’ and ‘3s’ duration utterances. 

Based on these observations 𝑟 was chosen to be 20 for later 

experiments. Furthermore, as previously mentioned it can be 

seen that the system performance degrades with increasing 

number of parameters. The reason for this may be that it 

introduces highly correlated parameters to the matrix 𝑉, due 

to the inclusion of the outer product of the input feature vector 

𝝎.  It should be noted that there are only 1.64M parameters in 

this low rank representation, a reduction of 99.0%. To explore 

the behavior at this operating point further, symmetric and 

diagonal constraints were also applied to the  𝑉 matrix, based 

on the idea that the weights relevant to the outer product of 𝝎 

tend to be symmetric in theory. The diagonal constraint was 

an extension of the symmetric and further reduced the number 

of unique parameters to train the second order factorized 

model. However, these constraints did not perform well in our 

evaluations as shown at the bottom of Table 2.  

    Finally, system evaluations were carried out for the 

BLSTM baseline and the proposed technique of compensation 

layer based adaptation including comparisons with some 

existing systems in the literature. Although many adaptation 

techniques have been proposed for many different 

applications, the goal of this paper was to propose the use of 

the second order factorization model, or the compensation 

layer, for mismatch compensation in a short duration 

language identification task. In consideration of this aim, and 

since adaptation is novel to language identification tasks, 

results for a LSTM based language identification system 

proposed in [27] are included for comparison, along with the 

baseline BLSTM approach described in Section II A. The 

benefit of factorised hidden variability subspace (FHVS) 

adaptation for a BLSTM layer was shown in [11], and as such 

this is also included as one of the comparisons. Table 3 shows 

that the proposed second order factorized adaptation 

technique is able to outperform all other systems with 28% 

relative improvement in terms of Cavg, and 22% relative 

reduction in EER compared to the baseline BLSTM system, 

confirming the effectiveness of proposed technique. Further, 

the proposed joint nonlinear adaptation learning scheme of 

second order information shows better performance compared 

to linear factorization based methods, such as FHVS proposed 

in [11]. This emphasises the significance of capturing the 

second order information in the mismatch conditions. Finally, 

the results in Table 3 show similar performance gains across 

the different utterance durations, showing that the proposed 

technique is generalizable. 

VII. CONCLUSIONS 

In this paper, we have proposed a compensation layer for 

mismatch adaptation. The significance of this BLSTM 

adaptation using second order information is studied using the  

analysis of the feature space and language identification 

experiments. When second order information of the input 

vectors is integrated into the adaptation compensation layer, it 

introduces a large number of parameters. The low-rank 

factorization method was found to be effective in reducing the 

number of parameters and obtaining an abstract representation 

of the information for the purposes of adaptation. The joint 

nonlinear adaptation learning scheme of the compensation 

layer showed promising results compared to some existing 

linear factorization techniques for adaptation. The proposed 

compensation layer introduced utterance dependant 

parameters using i-vectors and connected these to the BLSTM 

layer as a new set of adaptively trained weights. The proposed 

technique was evaluated with the AP-OLR17 database, which 

is designed for the short duration language identification task. 

For all test data durations of ‘1s’, ‘3s’ and ‘all’, the proposed 

compensation layer was able to achieve the superior 

performance compared to the baseline BLSTM system. 
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