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Abstract—Frame alignments can be computed by different
methods in GMM-based speaker verification. By incorporating
a phonetic Gaussian mixture model (PGMM), we are able
to compare the performance using alignments extracted from
the deep neural networks (DNN) and the conventional hidden
Markov model (HMM) in digit-prompted speaker verification.
Based on the different characteristics of these two alignments, we
present a novel content verification method to improve the system
security without much computational overhead. Our experiments
on the RSR2015 Part-3 digit-prompted task show that, the DNN-
based alignment performs on par with the HMM alignment.
The results also demonstrate the effectiveness of the proposed
Kullback-Leibler (KL) divergence based scoring to reject speech
with incorrect pass-phrases.

I. INTRODUCTION

Automatic speaker verification (ASV) has developed rapidly
in the last decade. ASV can be broadly categorized into
text-independent and text-dependent applications. In text-
independent ASV, the system verifies the speaker’s identity
using spontaneous speech, which is valuable for military
and forensic tasks. Text-dependent ASV, on the other hand,
requires users to utter a specific pass-phrase, and is commonly
used in commercial applications.

Although text-independent speaker verification is much
more flexible, text-dependent ASV is more suitable for appli-
cations which require higher security. The pass-phrases in text-
dependent speaker verification can be fixed or prompted during
enrollment and test, with text-prompted the more popular
approach in recent years [1]. Text-prompted systems requires
the user to both speak the correct text and be validated as the
target speaker. For instance, in digit-prompted ASV, users are
required to speak different digit strings. By verifying the text
contents, text-prompted speaker verification provides users an
additional protection and is more robust to replay spoofing
attacks [2]. In this paper, we focus on the digit-prompted case
and investigate both the speaker and content verification.

By virtue of a constrained vocabulary, digit-prompted
speaker verification usually delivers better performance for
short utterances. Many modeling methods have been devel-
oped for digit-prompted speaker verification. The most com-
monly used approach is based on Gaussian mixture models
(GMMs), motivated by text-independent speaker verification.

Universal background model (UBM) based maximum a poste-
riori (MAP) [3], joint factor analysis [4], i-vector with within
class covariance normalization (WCCN) [5] and probabilistic
linear discriminant analysis (PLDA) [6] have all been applied
to this field.

The calculation of the frame posterior (often referred as
frame alignment) plays an essential role in these GMM-
based models. The frame alignment P (s|xt) is the posterior
probability that speech frame xt belongs to a phonetic unit
s. Depending on the alignment methods, the phonetic units
can either be the GMM components generated by unsuper-
vised clustering or be assigned to the classes used in speech
recognition (e.g., monophones, monophone states or senones).
With more accurate frame alignment, the speaker verification
system can better model the phonetic units, and effectively
compare the features belonging to the same feature subspace.
In text-independent speaker verification, researchers have used
senones predicted by phonetically-aware deep neural networks
(DNNs) to generate frame alignments and improved the per-
formance significantly [7].

In digit-prompted speaker verification, if we assume all
users speak the correct digit strings, the transcriptions of the
utterances are known beforehand. As in speech recognition,
Viterbi forced alignment based on hidden Markov models
(HMMs) is a natural choice to obtain the alignments [3]. Using
the speech content, the HMM alignment provides accurate re-
sults even in adverse acoustic environments. However, the user
may incidentally misread the prompted text. This mismatch
will severely impact the quality of the HMM alignment.

As an alternative to the HMM alignment, conventional DNN
alignment can also be applied to extract the posteriors in digit-
prompted speaker verification. It has been found that i-vector
modeling using DNN alignment achieves good performance
on RSR2015 Part-3 evaluation [8]. In [9], [10], the authors
showed that DNN alignments outperformed HMMs on both
RSR2015 and RedDots [11]. Note that the quality of the DNN
alignment is influenced by the acoustic environment rather
than the transcriptions.

In this paper, we first compare the performance of HMM
and DNN alignments, using both GMM-MAP and i-vector
modeling, on the RSR2015 Part-3 digit-prompted task. To
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better understand the difference between these two alignments,
the HMM and DNN are trained on the same dataset and based
on the same phonetic units. Due to the limited number of
phonetic units in the digit-prompted verification, we use a
phonetic GMM (PGMM) approach [12] for both GMM-MAP
and i-vector modeling, keeping roughly the same number of
Gaussian mixtures across the different systems.

The assumption that all the input utterances contain the
correct contents is unrealistic. Attackers can record the speech
of a target user, and malicious replay attacks often present
the speech with wrong text content. In fixed-phrase text-
dependent ASV, techniques like keyword spotting or wakeup
word detection [13] can be applied to verify the content. While
on the digit-prompted condition, speech recognition is the most
commonly used method, which introduces extra complexity in
the computation and the system deployment. Since the HMM
and DNN alignments exhibit complementary properties, the
sequence information in both alignments can be considered
together. In this paper, we propose a novel Kullback-Leibler
(KL) divergence based scoring to verify the text content
without speech recognition decoding. This algorithm involves
low computational overhead and is especially suitable for
the embedded devices. The effectiveness of this method is
validated by our experiments.

The organization of this paper is as follows. Modeling
methods based on the HMM alignment are briefly introduced
in Section 2. Section 3 describes PGMM using the DNN
alignment. Then, based on these alignment approaches, a
fast and efficient algorithm to verify the utterance content
is proposed in Section 4. Experimental setup and results are
presented in Section 5 and 6. Finally, Section 7 concludes the
paper.

II. THE ROLE OF HMM

In GMM-based speaker verification, a frame alignment is
first generated and then used to calculate the Baum-Welch
statistics. In digit-prompted speaker verification, the Viterbi
or forward-backward (FB) algorithm is a common choice to
align speech frames to the HMM phonetic units. On the digit-
prompted condition, each digit is treated as a whole-word
model. In this paper, we use N -state HMMs to represent ten
digits plus silence.

Given a transcription, a directed graph of HMM states is
first compiled. The Viterbi or FB algorithm uses this graph
to find a state path that optimally fits the feature sequence.
In Viterbi forced alignment, frame xt is aligned to the most
likely state qt, i.e. P (s|xt) = 1 if and only if s = qt. The FB
alignment, which can be seen as a soft version of the Viterbi
algorithm, computes the posterior from forward and backward
probabilities [14]. In [15], it was shown that these two types
of alignments result in similar performance. To better compare
the alignments generated by HMM and DNN, the soft FB
alignment is used in our experiments.

In GMM-HMM, the state s is modeled by GMM λs =
{ws,c,µs,c,Σs,c}, which is treated as the universal back-
ground model (UBM), as in the text-independent speaker

verification. Frames are aligned to different Gaussian mixtures
of states using HMM alignment P (s|xt, h)

γHMM
s,c,t = P (s|xt, h)P (c|xt, λs) (1)

where γHMM
s,c,t is the posterior of xt occupying the c-th mixture

of state s, h represents the HMM, P (c|xt, λs) is the Gaussian
posterior of component c in GMM λs.

The normalized Baum-Welch statistics using the GMM-
HMM alignment are

Ns,c =
∑
t

γHMM
s,c,t (2)

F̄ s,c =
∑
t

γHMM
s,c,t (xt − µs,c) (3)

Σ̄s,c =
∑
t

γHMM
s,c,t (xt − µs,c)(xt − µs,c)

T (4)

To adapt the HMM to a speaker model, GMM-MAP estimation
is applied as

µ̂s,c = αs,cF̄ s,c + µs,c (5)

where µ̂s,c is the mean of the adapted speaker model and
αs,c = 1/(Ns,c + r), r is the relevance factor [16]. During
test, the verification score is the log-likelihood ratio computed
against the speaker model and UBM.

In the i-vector modeling, the statistics extracted by (2-4)
are used for the total variability space training and i-vector
extraction [17]. The flowchart of GMM-MAP and i-vector
using the GMM-HMM alignment is illustrated in Fig. 1a. In
the figure, speaker and speech features indicate the features
more suitable for speaker and speech recognition, respectively.

In DNN-HMM, each state is modeled by a DNN output.
The state posterior P (s|xt, h) is calculated based on the log-
likelihoods computed by a DNN rather than several GMMs.
In this case, the within-state posterior P (c|xt, λs) cannot be
calculated directly. It should be estimated using the method
introduced in the next section.

III. PGMM WITH DNN-BASED ALIGNMENT

In conventional text-independent speaker verification, the
outputs of the DNN are usually senones modeled by a single
Gaussian [7]. However, in digit-prompted applications, the
number of states is much smaller than for the text-independent
case due to the limited vocabulary [3], [8]. To increase the
modeling capability of the DNN alignment, a DNN-based
phonetic GMM (PGMM) is used in this paper. Each state in
the PGMM is represented by a GMM rather than a single
Gaussian. The idea of PGMM was first proposed in [18], and
was once applied to DNN/i-vector framework in [19].

To initialize the model, each feature is first hard aligned
to one states with the maximum posteriors. The initial state
GMMs are then trained individually. Let τ denote the DNN
model, and γDNN

s,c,t is the posterior of xt occupying the c-th
mixture of DNN state s. Using the DNN alignment these
GMMs can be trained by EM algorithm and the sufficient
statistics are accumulated by (6-10).

γDNN
s,c,t = P (s|xt, τ)P (c|xt, λs) (6)
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Fig. 1: The flow diagrams of digit-prompted speaker verifi-
cation systems based on (a) HMM alignment and (b) DNN
alignment.

Ns,c =
∑
t

γDNN
s,c,t (7)

ws,c = Ns,c/
∑
c

Ns,c (8)

µs,c =
1

Ns,c

∑
t

γDNN
s,c,txt (9)

Σs,c =
1

Ns,c

∑
t

γDNN
s,c,t(xt − µs,c)(xt − µs,c)

T (10)

The parameters of PGMM are updated iteratively. The PGMM
algorithm can also be used in DNN-HMM to calculate
the within state posterior, by replacing the DNN posteriors
P (s|xt, τ) with the alignment posteriors P (s|xt, h).

As with the HMM alignment, the posteriors γDNN
s,c,t calculated

from (6) are used to extract the statistics. GMM-MAP and i-
vector modeling are applied in the same manner as described
in Section 2, expect for the different alignment sources. The
procedure is demonstrated in Fig. 1b.

IV. FAST CONTENT MATCHING

In real-world applications, speaker verification systems face
many kinds of attacks [2]. Replay is a form of low-cost
spoofing attack where an adversary claims to be a target
speaker using a recorded speech sample. If the text is prompted
in the runtime, we can prevent this replay attack effectively,
since these samples are often captured surreptitiously and the
attacker cannot carefully control the content. Hence the content

matching is important to enhance the security in commercial
applications.

However, most published papers about text-prompted
speaker verification do not focus on content verification,
often treating this as a separated speech recognition task.
When pass-phrases are fixed during enrollment and test, some
techniques, e.g., query-by-example (QbE) keyword spotting
[13] or dynamic time wrapping (DTW) [20], [21], can be used
to compare the contents. However, these techniques cannot
be easily applied to the digit-prompted case considering that
the pass-phrases in the enrollment and test differ from each
other. Another option to do the content verification is to insert
a speech recognition system [3]. The disadvantage of this
method is that the decoding procedure costs significant time
and increases the model complexity.

In the PGMM framework, the DNN is trained based on the
HMM alignment. Although they share the same set of phonetic
units, they generate the alignments from different perspectives.
The HMM is capable to find the globally optimal alignment
given the transcription. If the transcription is consistent with
the speech content (which means the user speaks the correct
prompt), the HMM generates the alignment with good quality.
If the content is inconsistent, the alignment becomes incorrect
respectively. In contrast, the DNN aligns the frames only based
on the local acoustic features and will not be impacted by any
transcriptions. Considering these different characteristics of
the two alignments, we use the DNN alignment as a reference
and propose a fast and efficient scoring method to verify the
text content without any decoder.

The alignments are posteriors from the HMM and the DNN.
The deviation between these posteriors can be defined by
Kullback-Leibler (KL) divergence:

KL =
1

T

T∑
t=1

∑
p

γHMM
p,t log

(
γHMM
p,t /γDNN

p,t

)
(11)

where T is the total number of frames and p denotes the
phonetic class which will be explained later.

The KL divergence in (11) should be small when the speech
is correctly uttered, since the HMM and DNN alignments
both exhibit the genuine phonetic sequence. Biases will be
introduced into the HMM alignment when the transcription
is uttered incorrectly, making the alignment sequence deviate
from that of the DNN. The mismatch leads to a increase in
the KL divergence. Thus, the deviation between these two
posteriors becomes a metric to detect speech with wrong text.

The straightforward definition of a phonetic class p in digit-
prompted speaker verification is a single state s of a digit,
but we find it is always beneficial to involve a broader class,
i.e., p = {s|s ∈ dp}, dp is a digit. The rational is easy to
understand. Since the DNN alignment is noisy and can be
harassed by the adverse acoustic environment, the broader
definition improves the robustness to some alignment errors.

Given the definition, the posterior of a phonetic class p at
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time t is expressed as:

γ
{·}
p,t =

∑
s∈p

∑
c

γ
{·}
s,c,t (12)

where {·} is HMM or DNN respectively.
Note that the KL divergence is defined only if γDNN

p,t = 0 im-
plies γHMM

p,t = 0. The HMM and DNN alignments are sparse,
and may violate this condition. To alleviate this problem, we
adjust the both posteriors by

γ′p,t =
γp,t + ε∑
p(γp,t + ε)

(13)

where ε = 10−5 is a small constant.
By this method, the content verification becomes simply

a byproduct of the speaker verification. An additional HMM
alignment is the only extra step to generate a content verifica-
tion score, after the DNN posteriors computation. Alignment
algorithm based on Viterbi or FB is much faster and easier
to implement than a speech recognition decoder [22]. Unlike
QbE or DTW, which only works for the fixed-phrase condition,
KL divergence scoring can be applied to content verification
with arbitrary text. This light-weight algorithm is suitable for
embedded devices whose power and computing capability is
limited.

V. EXPERIMENTAL SETUP

A. Data

The experiments are carried out on RSR2015 Part-3, which
is a digit-prompted task. Digit strings are prompted during
enrollment and test. The enrollment data for a speaker contains
three ten-digit utterances, and the test utterance is a five-
digit sequence. The background and development sets (about
22 hours) are used for the gender-independent UBM, DNN,
PGMM and i-vector training. The evaluation set contains 57
male and 49 female speakers. The detailed statistics of this
dataset can be found in [1]. The trials can be partitioned into
four categories: (1) target speaker produces correct content
(TC), (2) target speaker produces wrong content (TW), (3)
imposter speaker produces correct content (IC), and (4) im-
poster speaker produces wrong content (IW). Only the first TC
combination is accepted by the digit-prompted system, while
the other three categories are all non-target trials. Equal error
rate (EER) and minimum decision cost function (minDCF)
in SRE08 [23] and SRE10 [24] are used for evaluation. For
speaker verification, we investigate the performance of TC-
IC (i.e. compute the metrics among TC and IC trials), and
the performance of TC-TW is taken into account when we
check the effectiveness of the proposed fast content verification
method. We do not report TC-IW, because it is the easiest task
that all systems achieve relatively good performance.

B. Models

• DNN: The DNN in this paper consists of 4 fully con-
nected layers with 512 nodes per layer. The input is a
vector of 120-dimensional FBank (40 filter-bank energies
plus delta/delta-delta) features with symmetric 5-frame

expansion, resulting in 11 frames in total. The number of
output nodes is 33, which equals to the state number in
our HMM. The training data is generated by the HMM-
based Viterbi alignments. This DNN is also used in the
following DNN-HMM model.

• HMM: The GMM-HMM and DNN-HMM used in our
experiment is trained using HTK [22]. Each word (ten
digits plus silence) is modeled by a 3-state HMM.
In GMM-HMM, each state is represented by a 16-
component GMM. 60-dimensional MFCC features (20
static + delta/delta-delta) with CMVN are used to train
the GMM-HMM. The MFCC features are also used in
all models other than the DNN.

• Conventional GMM-MAP/i-vector: A gender-
independent UBM with 512 mixtures is trained.
The relevance factor is 5.0 in the GMM-MAP system.
For i-vector modeling, the rank of the i-vector subspace
matrix is 400. LDA, length normalization and PLDA are
applied to score the trials.

• PGMM: For DNN and DNN-HMM alignments, the
PGMM model is used to calculate the statistics. States
corresponding to silence are ignored. Each state is rep-
resented by a 16-component GMM. The total number of
mixtures in the PGMM is 480. All other configurations
are the same as the conventional GMM-MAP/i-vector.

VI. RESULTS

A. Comparison of different alignments

The speaker verification performance of GMM-MAP and
i-vector on TC-IC trials are presented at the top and bottom
parts of Table I. Within all the alignments, we find that GMM-
MAP consistently outperforms i-vector. Since i-vector is only
the point estimation of the latent factor in the total variability
subspace, it becomes less reliable due to the large variance
when the duration is too short and it cannot achieve good
performance in this task. Also as expected, frame alignments
calculated on the unsupervised GMM perform the worst in
both modeling methods.

TABLE I: Performance (EER(%)/minDCF08/minDCF10) of
GMM-MAP and i-vector using different frame alignments.
Only TC-IC is reported.

Models male female
TC-IC TC-IC

GMM-MAP 3.38 / 0.0165 / 0.6607 3.36 / 0.0161 / 0.4951
DNN/GMM-MAP 2.08 / 0.0115 / 0.5307 2.68 / 0.0129 / 0.4525
HMM/GMM-MAP 2.20 / 0.0116 / 0.5128 3.16 / 0.0140 / 0.4676

DNN-HMM/GMM-MAP 2.06 / 0.0112 / 0.5173 2.95 / 0.0137 / 0.4565
i-vector 3.49 / 0.0174 / 0.5686 3.50 / 0.0176 / 0.5467

DNN/i-vector 2.74 / 0.0148 / 0.5357 3.10 / 0.0169 / 0.5740
HMM/i-vector 2.77 / 0.0162 / 0.6583 3.10 / 0.0170 / 0.6154

DNN-HMM/i-vector 2.71 / 0.0162 / 0.6045 3.34 / 0.0169 / 0.5988

In Table I, it is interesting to find that the DNN-based align-
ment achieves results on par with the HMM-based alignments.
Actually, it outperforms GMM-HMM on many conditions.
Even though DNN-HMM can achieve a better alignment
quality than GMM-HMM theoretically, it fails to beat the DNN
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alignment as well. The results are consistent with [10]. Unlike
[10], we use the same dataset to train the HMM and DNN and
the basic phonetic units are also the same. The comparison
should be fair in this case.

This experiment indicates that the extra text information
adds little to speaker verification results on RSR2015 Part-3.
We hypothesize the reason is that, the local information used
in the DNN aligns the frames to the phonetic units well, while
the HMM alignment are likely to be disturbed. For example,
users may mispronounce the phones in the training data which
leads to poor HMM alignments.

B. Reject wrong text

Although the HMM alignment does not boost the perfor-
mance of speaker verification, the prompted pass-phrases can
still help to improve the security. The KL divergence in (11) is
used to reject non-matched content. GMM-HMM and DNN-
HMM are two sources of HMM alignments while the DNN
provides the reference. As a comparison, a speech recognition
decoder is implemented by HTK and the method in [3] is used
as the baseline. For speech recognition decoder, the acoustic
model is the GMM-HMM used in the last experiment, and the
language model is a word-loop constructed by ten digits plus
silence. This decoding-based text verification is also shown in
[3].

As described in Section 4, two different phonetic classes
are investigated. The state-level in Table II denotes that the
KL divergence is computed between states, while the states
belonging to the same digit are clustered as one phonetic class
at the digit-level systems. Results on the TC-TW trials are
shown in Table II.

TABLE II: Performance (EER(%)/minDCF08/minDCF10) of
different content verification methods. Results are reported on
TC-TW trial.

Methods male female
TC-TW TC-TW

Decoding [3] 0.25 / 0.0010 / 0.0704 0.05 / 0.0004 / 0.0394
DNN+GMM-HMM (state) 0.74 / 0.0041 / 0.1721 0.37 / 0.0027 / 0.1303
DNN+DNN-HMM (state) 0.40 / 0.0016 / 0.0699 0.03 / 0.0003 / 0.0312
DNN+GMM-HMM (digit) 0.30 / 0.0016 / 0.0566 0.03 / 0.0002 / 0.0250
DNN+DNN-HMM (digit) 0.25 / 0.0012 / 0.0587 0.02 / 0.0002 / 0.0210

As shown in Table II, the decoding-based method performs
well in this task. Meanwhile, the proposed KL divergence
based scoring is also an efficient way to verify the text content.
Compared to the decoding-based method, the KL divergence
achieves competitive performance on both male and female
trials. Among all the results, scoring between DNN and DNN-
HMM performs better. The reason is that when aligning frames
using DNN-HMM, we use the posteriors generated by the
DNN, making their posteriors more consistent with each other.
Thus the deviation for matched speech can be minimized.

Different phonetic classes are also investigated. In practice,
we observed that the DNN alignment can differ from the HMM
alignment due to the adverse acoustic environment and the
mispronunciation. A broader phonetic class is more robust to

this disturbance. It is presented in Table II that, compared
to the state-level class, using digits as the phonetic classes
illustrates better performance. Overall, the digit-level KL
divergence scoring using DNN and DNN-HMM alignments
achieves the best performance.

VII. CONCLUSIONS

In this paper, we first compare several speaker verification
methods implemented on the RSR2015 Part-3 digit-prompted
task. The experiments show that GMM-MAP outperforms
vanilla i-vector on this task. In both modeling methods, poste-
riors calculated on DNN and HMM achieve better performance
than unsupervised GMM. Alignments based on DNN gener-
ally exhibit better performance than GMM-HMM alignments.
The use of DNN-HMM, which is a common practice in
speech recognition, does not lead to further improvements.
The results demonstrate the effectiveness of DNN alignment
in digit-prompted speaker verification. In contrast, the use of
HMM seems to be affected by inaccurate pronunciation and
mismatched text and do not outperform the DNN alignment.

Considering the characteristics of these different alignments,
we then propose a novel algorithm to further verify the text
content. The KL divergence between the DNN- and HMM-
aligned posteriors efficiently conveys the content matching re-
sult, especially when DNN and DNN-HMM is used. The digit-
level KL divergence scoring with broader phonetic classes
is applied to further improve the robustness. This method
is useful under both fixed- and prompted-phrase conditions.
Although the speech recognition decoder can also be used,
we note that this KL divergence scoring is much faster and
easier to implement.

In the future, we will explore new methods to fully utilize
the known transcriptions in the text-prompted task. Also, we
will develop the KL divergence based method to verify trials
with a larger vocabulary.
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