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Abstract—Environment recognition has been an important
topic ever since the emergence of augmented reality (AR). For
better experience in AR applications, environment recognition
should be provided fast in real-time, where real-time object
detection technologies could fulfill this requirement. However,
training object detectors for AR specific scenarios are often
troublesome. The real-time nature of AR produces visual degra-
dations such as motion blur or occlusion by interaction, which
make detectors trained with plain data difficult to detect objects
exposed in such complex situations. Also, since gathering and
labeling training data from scratch is a heavy burden, we need
to resort to synthesized training data but previous synthetic
data generation frameworks do not consider the aforementioned
issue. Therefore, in this paper, we propose a new synthetic
data generation framework which includes visual variations
such as motion blur and occlusion occurred by distractors. By
this simple modification, we show that including such variated
data to the training dataset could dramatically improve real-
time performance of object detectors by a high margin. Also,
we stress that synthesizing training data with no more than
three objects per image can achieve competitive performance
compared to detectors trained with over four present in a single
image. Experimental results both quantitatively and qualitatively
supports our statements and shows the superiority of our method.

I. INTRODUCTION

Augmented reality (AR) has received significant attention
across the industry and academic society [1]–[4]. Recently,
AR technologies pursue methods for more realistic experience,
which has also been studied across various domains [5]–
[11]. To meet the demand for more realistic AR applications,
developers started to pursue higher level user interactions.
For realistic experience in such interactions, recognizing the
surrounding environment in real-time is highly necessary.
A suitable technology to satisfy this requirement is object
detection. Object detection can be considered the most basic
form of environment recognition since knowing which object
is present in the current scene can provide plenty information
about the environment. Also, object detection have shown
astonishing development [12]–[19] and now one stream of the
detection systems guarantee real-time (>30 fps) performance
with high reliability [17]–[19]. By customizing these object
detection systems, we can provide better experience reliably
in real-time for AR applications.

When customizing a real-time object detection system to an
AR specific scenario, we usually confront two issues. The first
issue is visual degradations coming from complex interactions
between the object and the environment. One of the visual
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Fig. 1. Two typical types of visual degradation that commonly occur in real-
time AR applications. (a) Motion blur (b) Occlusion.

degradation is motion blur. AR devices are often equipped with
low-quality RGB cameras which are prone to significant mo-
tion blur effects as in Fig. 1. In the blurred scene, it is generally
very hard to recognize or detect objects since the appearance is
degraded and differs from those in the training data. A simple
option is to deblur the degraded image before detection but this
approach requires additional computation time which is not
appropriate for real-time applications. Another type of visual
degradation is occlusion. Objects under complex interactions
are prone to be occluded by the surrounding environment,
especially under human interactions, as shown in Fig. 1.
This can be overcome by collecting training data on various
interaction scenarios, but interaction cases are countless; it
is very hard and not clear to determine how much data is
enough to completely make the detection network learn such
interactions.

The second issue is gathering training data. Suppose you
want to interact with some specific category of objects in an
AR application. If the categories are present in some open
benchmarks [20]–[23], you’re lucky, but that’s not always the
case since much more categories exist in the world. Even if
the category exists, the appearance of the object that we are
targeting may not be included in the dataset. In such cases we
have to manually gather images and annotate them hand-by-
hand which requires heavy labor and is burdensome without
the help of crowd sourcing tools. Recently, several frameworks
have been proposed for synthesizing training data [24], [25]
with object masks and backgrounds to reduce such labor and
have shown that these data can help improve performance of
object detectors. However, these frameworks do not consider
the aforementioned complex interactions during the synthesis
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procedure which are very important in real-time detection.
Moreover, since the object detection systems are trained with
both real and synthetic data for evaluation, they do not give
clear evidence if systems trained with pure synthetic data work
well in real-world cases.

Considering these issues, in this paper, we propose a simple
yet efficient method on generating synthetic data for training
a real-time object detection network which is robust to visual
degradations. To overcome difficulties in detecting blurred
objects, we show that synthesizing data with artificially blurred
object masks can generate very similar data compared with
real-world blurred images and adding these to the training data
can significantly improve performance of real-time detection.
Also, we show that partially occluding objects with distractors
can help the detection network learn the overall context of
the complex interactions that occur frequently in reality. From
the point of gathering training data, we analyze on how
much synthetic data is necessary for training a real-time
object detector in terms of the number of objects present
in each image. Evaluation procedures are conducted on our
own production test sequences which naturally reflect real-
world interactions. We demonstrate that it is not difficult and
is completely feasible to train a object detector with pure
synthetic data while maintaining prominent performance.

II. PROPOSED METHOD

The overall framework of our synthetic data generation
method is summarized in Fig. 2. In this section, we explain
each stage in detail following the sequence of the pipeline and
point the differences compared to previous works [24], [25].
We also briefly discuss the evaluation metrics we used to show
the efficiency of our method.

A. Base Data Acquisition

We first gather diverse background images so that the syn-
thesized data resemble the complex real-world environments.
Next, we collect the object masks that we want to detect in our
current scenario. The methods proposed in [24], [25] both use
an auxiliary segmentation network to collect necessary object
masks. In practice, however, this is not practical in many cases
because we need to train a segmentation network from scratch
and training the network also requires additional labeled data.
Instead, we take photos of our target objects in a plain
background and remove the backgrounds with a simple image
masking algorithm. Although this requires human guidance for
carefully removing the backgrounds, we only need few object
masks for synthesizing the whole dataset and this is trivial
compared to annotating every bounding boxes one-by-one.

B. Applying Visual Variations

After the backgrounds and object mask data are gathered,
one background image and N object masks are sampled from
the database, where N is the total number of objects to place
in the background scene. To diversify the training dataset with
rich appearances, visual variations are applied to each of the
sampled object masks.
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Fig. 2. Overview of the synthetic data generation framework with motion blur
and occlusion synthesis. The dotted line transitions occur with 0.5 probability
which skips the motion blur or occlusion synthesis stage.

First, motion blur is optionally applied to the object mask
with 0.5 probability. We use a simple form of motion blur
synthesis in generating motion blurred object masks. We define
a motion blur kernel which is controlled by two parameters
wmb and θmb, which represents the motion blur size and
direction angle with respect to the x-axis, respectively. The
kernel is a linear motion blur kernel, where wmb pixels are
average through the direction θmb with respect to the center
of the kernel. This kernel is applied to the whole object mask
generating the blurred mask as in Fig. 2. For natural blending
with the background, the kernel is also applied to the alpha
channel of the object mask. Without alpha channel blurring,
the blurred object mask generates artifacts at the boundary
after it is blended to the background as in Fig. 3.

Next, scaling and rotation of the object mask is considered
as in other frameworks. The scaling parameter sobj scales
the object mask to a respective size of the background. For
example, if we set sobj = 0.5, then the object mask is scaled to
half size of the background. The scale is determined relatively
to the longer side of the background in order to constrain
the object from exceeding the size of the background image.
Parameter θobj is the angle of rotation with respect to the x-
axis. The bounding box of the object mask is trimmed after

(a) (b)

Fig. 3. Comparison between synthesis (a) with and (b) without alpha channel
blurring. Artifacts are observed when alpha channel blurring is not used.
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TABLE I
THE CATEGORIES AND THE NUMBER OF OBJECT MASKS PER CATEGORY FOR SYNTHESIZING TRAINING DATA

Object Category Rifle Bat Bag Bottle Knife Handgun Laptop Umbrella Book Phone Broom Chair Total
# of Object Patches 17 24 15 18 9 13 39 17 39 18 8 9 226

rotation so that it fits tightly to the boundary of the object
mask as shown in Fig. 2.

Finally, a distractor is added to the object mask also with
0.5 probability. The role of the distractor is to model real-
world interaction. Like the object mask, the distractor is also
scaled and rotated, with parameters sdis and θdis, making sure
that it does not overlay the object mask. After the variations,
the distractor mask is placed to the object mask generating
the final transformed object mask ready to be pasted to the
background.

C. Positioning Multiple Objects

When we paste more than one object into the background,
randomly placing additional objects can cause a problem since
the added object mask can accidentally cover the object mask
already present in the background. To prevent this problem,
we place the next object mask to a randomly sampled position
and measure the intersection of union (IOU) between the
added object and the object present in the background. If the
IOU exceeds a predefined tolerance value εiou, we resample
the position and repeat until the IOU is lower than εiou.
By choosing appropriate scale and rotation parameters, we
observed empirically that there is no problem pasting up to
10 objects into a single background.

III. EXPERIMENTAL RESULTS

Our experiments were designed targeting real-time scenar-
ios where test sequences are degraded with motion blur or
occlusions and manually labeling training data is a complete
burden. We constructed various types of training datasets using
our proposed method and evaluated on our production test se-
quences. We carefully chose 12 object categories, where some
are commonly seen and others are application specific. The
categories and the number of object masks used for synthesis
per category is shown together in Table 1. We made sure
that the object occurrences are uniform across all categories,
although the number of object masks for each category differs.
The training datasets were all matched to 20,000 images using
the same background database. We gathered the background
images by randomly sampling from the Microsoft COCO
dataset [22], excluding those that contain the same category
objects with our target categories.

The parameters of the synthesis procedure were deter-
mined as follows. The motion blur size wmb was sam-
pled from {20, 40}, motion blur direction angle θmb from
{−45, 0, 45, 90}, scaling parameters sobj and sdis from
{0.2, 0.3, 0.4}, and rotation angles θobj and θdis from
−45, 0, 45, 90. The tolerance IOU value εiou was set to 0.1.
Since random scaling and flipping occurs during data augmen-
tation in the training procedure, it can cover other values of

(a) (c)(b)

Fig. 4. Example frames from the test sequences. (a) Single object interaction
(b) Multiple object interaction (c) Synthetic multiple object sequences.

rotation scaling factors. The total number of objects per image
N will be discussed later.

For our object detection network architecture, we used
YOLOv2 [19], one of the state-of-the-art real-time object
detectors, which is easy to train and deploy using their custom
deep learning framework [26]. Since real-time object detection
networks are structurally similar in that region proposal and
classification are jointly coupled in the output layer, we believe
our experiment results will produce similar tendencies when
testing with other real-time networks.

A. Datasets for Training and Evaluation

We constructed three test sequences with the following
scenarios: single object interaction, multiple object interaction
and synthetic multiple object detection. Example frames of
the sequences are shown in Fig. 4. In the single and multiple
object interaction scenarios, ground truth labels are manu-
ally annotated by hand. Since the synthetic multiple object
sequence is constructed with our proposed method, ground
truth labels are produced automatically. In the single object
interaction scenario, 50 frames are sampled per object category
resulting in total 600 frames. In the multiple object interaction
scenario, we sample 200 frames in total with 50 bounding box
occurrences per category. In average, there are approximately
3 objects present at each frame. Since acquiring real-time test
sequence with more than 4 or 5 objects is a burden due to the
annotation process and setup issues, we evaluate performance
of multiple object detection of more than 4 objects using a
synthetic test sequence. This test sequence is generated by
the same procedure with the training data, except for that the
background images are sampled excluding the ones used in
constructing the training datasets.

Using the proposed method, we construct various datasets
and train networks on each of them. We first construct four
datasets with N = 1 and evaluate networks trained on them
with the single object interaction test sequences to show that
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TABLE II
EVALUATION RESULTS ON THE SINGLE OBJECT INTERACTION SCENARIO

Visual Variations Rifle Bat Bag Bottle Knife Handgun Laptop Umbrella Book Phone Broom Chair mAP
SynDB1 w/ none 48.4 33.6 31.5 64.3 27.5 32.5 44.2 41.5 52.5 29.6 16.7 15.6 36.5
SynDB1 w/ occl 68.5 76.8 21.0 74.4 31.0 31.8 58.0 64.4 63.9 57.4 31.3 24.9 50.3
SynDB1 w/ mb 64.5 85.6 55.3 90.8 25.6 64.4 47.4 59.2 73.0 77.3 41.0 14.8 58.3

SynDB1 w/ mb and occl 89.7 78.8 67.7 87.0 46.8 69.7 70.6 82.7 87.3 81.9 77.2 87.7 77.3

TABLE III
EVALUATION RESULTS ON THE MULTIPLE OBJECT INTERACTION AND

SYNTHETIC MULTIPLE OBJECT SEQUENCES.

Dataset Type Multiple Object
Interaction

Synthetic Multiple
Object

SynDB1 54.3 63.0
SynDB2 56.4 80.4
SynDB3 59.6 84.7
SynDB4 57.4 83.3
SynDB5 57.7 85.3
SynDB6 60.4 84.3
SynDB7 55.9 85.0
SynDB8 60.9 85.0

motion blur and occlusion synthesis is crucial in training
real-time detectors. The four datasets have different types of
visual variations: one with both motion blur and occlusion,
one with only motion blur, one with only occlusion and one
with none of motion blur occlusion synthesis. Next, to identify
how many object occurrences are necessary in each image for
training a reliable multiple object detector, we train networks
on datasets by varying N from 1 to 8. The datasets are all
synthesized with both motion blur and occlusion synthesis in
this case. We denote SynDBn as the dataset constructed with
n object occurrences per image. The models trained with these
datasets are evaluated on both the multiple object interaction
and synthetic multiple object sequences.

B. Quantitative Results

With the aforementioned training and test data, we evaluated
our object detection networks with the average precision (AP)
metric [20]. Table 2 shows the evaluation results in the single
object interaction sequence of the datasets with different types
of visual variations. We observed that performance dramati-
cally increases from the baseline as we add variations one
by one. Also, the highest mean average precision is obtained
with a large margin when both motion blur and occlusion are
included. This clearly shows that motion blur and occlusion
are tightly correlated and occur concurrently in many real-time
interaction scenarios. In order to achieve the best performance
in these situations, both motion blur and occlusion should be
considered in generating the synthetic training data. For some
object categories such as bag, knife and handgun, the overall
average precision was lower compared to other categories. The
bag we used for detection was freely deformable, which makes
significant appearance changes that are hard to be covered by
the proposed augmentation techniques. The knife and handgun
appearances were generally very small compared to other
categories, where small object detection is still a very difficult
task for modern object detectors.

(a) (b)

Fig. 5. Qualitative results on the single object test sequences. The results on
the case of occlusion is shown in (a) and the case of motion blur is shown in
(b).

Table 3 shows the results in the real and synthetic multiple
object sequences. We found that there is no close relationship
between the maximum performance and the number of objects
present in each image, but we found an interesting tendency.
On both sequences, performance significantly increases until
the SynDB3 and does not improve drastically and oscillates
within a small margin. From this result, we can conclude that
it will be sufficient to train networks with just three objects in
each image, without losing much performance overall.

C. Qualitative Results

Fig. 5 shows qualitative results on the single object test
sequences. The first row shows the results from the detector
trained by SynDB1 with none, the second row trained by
SynDB1 with occlusion synthesis, and the third row trained
by SynDB1 with both motion blur and occlusion synthesis.
Fig. 5 (a) shows the detection result on a occluded object
which is divided into two parts by the hand of the interacting
person. With no occlusion synthesis added to the training
dataset, the network cannot understand the gripping interaction
and eventually detects only the last tip of the divided object.
In contrast, networks trained with occlusion synthesis detects
the whole object by understanding the overall context of the
image. Fig. 5 (b) shows the result of the object detectors
trained with and without including motion blur synthesis.
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As expected, the model trained with motion blur synthesis
successfully detects the blurred object while those trained
without the synthesized data all fails.

IV. CONCLUSIONS

This work shows the feasibility of training object detection
networks for real-time detection with pure synthetic data.
Since gathering training data is expensive, more research
should be conducted on generating more useful and realis-
tic synthetic data in a simple and efficient way to relieve
information polarization which is prevalent in many research
areas. We believe our work has contributed to this direction,
and encourage further research on generating training data for
other kinds of applications as well.
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