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Abstract—In this paper, we propose a new method for 3D CNN
based partial 3D shape retrieval focusing on local features. A 3D
partial shape in our approach is defined by a collection of points
on the visible surface projected on the view-screen, during the
rendering of a given 3D shape. We construct a voxel from the
partial 3D points after extracting the local feature vectors and
subsequent dimensional reduction by PCA (Principla Component
Analysis) and feeding the reduced feature vectors to 3D CNN.
This is a unique approach in contrast to the traditional approach
to 3D CNN where the voxels have their values either 0s or 1s (i.e.
binary voxels). We conducted experiments with a SHREC2016
partial 3D dataset. Our proposed approach outperformed the
VoxNet. We also compared our proposed method with other
previous methods for partial 3D shape search.

I. INTRODUCTION

In recent years, 3D models have been used in various fields
such as manufacturing industry, medical care, architectural
design, education, and entertainment. Accordingly, the amount
of 3D shape models available on the Internet is rapidly
increasing, so that the need for accurately searching 3D shape
models is also increasing. On the other hand, it has been
pointed out that 3D-to-3D shape search is not easy unless we
have 3D shape models at hand. To alleviate this problem, it is
convenient to employ inexpensive 3D scanners such as Kinect
[1], in order to acquire a rough 3D shape as a query to 3D-
to-3D shape search. Even though it is relatively convenient to
use a 3D scanner to obtain a 3D shape, a new problem has
arisen, which is caused by the incompleteness of a 3D shape
acquired from a scanner. This incomplete shape can be viewed
as a partial shape of a complete 3D shape model.

Research on the partial 3D shape search has been conducted
by many researchers [4] [6] [8] [16] [19] However, to our
knowledge, no research on partial 3D shape retrieval has
employed 3D CNN whose input accepts local features directly.

In this paper, we propose a new partial 3D shape retrieval
focusing on local features, which are directly fed into 3D
CNN. In our proposed method, 3D mesh data obtained by
a 3D scanner is first converted to a point cloud, followed
by applying pose normalization, extraction of partial shapes,
selection of “representative points”, and by extracting local
feature vectors. Furthermore, we apply Principal Component
Analysis (PCA) to local features in order to reduce the
dimension of local feature vectors. Finally, the compressed
feature vectors are inserted into a voxel. Thus, a voxel is
either a zero vector or a real vector having the dimension
of the compressed feature vector. Please note that a traditional

method such as VoxNet [14] represents a voxel as either 0
(empty) or 1 (an object is occupying the voxel space), which
is sometimes referred to as binary voxel.

We conducted experiments of our proposed method by using
SHREC 2016 partial dataset and demonstrate that our method
outperforms the VoxNet.

II. RELATED WORK

3D partial shape retrieval has been studied by many re-
searchers including Furuya et al. who proposed Randomized
Sub-Volumes Partitioning (RSVP) [5], and Tran et al. who
proposed a composite approach to partial 3D shape retrieval
[16].

RSVP is a method of extracting a partial shape from a 3D
model. RSVP divides the 3D model into a grid and produces
sub-volumes, corresponding to partial shapes. Sub-volumes
can be thought of as feature vectors.

Tran et al. proposes a method for partial 3D shape search
by combining the BoVW (Bag of Visual Words) features com-
puted from local features called “RootRoPS”, and a method
called ICP [16]. VoxNet [14] is a representative method for
3D shape similarity search using voxels and 3D CNN. VoxNet
represents a voxel as binary value of either 0 or 1. Specifically,
in VoxNet, a 3D model is represented by a collection of voxels
whose values are initialized as 0s, and if a point sampled from
a 3D shape is included in a voxel, the value of the voxel
becomes 1.

Typical research on 3D local features includes Fast Point
Feature Histogram (FPFH) [17] and 3DMatch [23]. FPFH is
computed from the histograms derived from several angular
geometric relationships. 3DMatch is a method of computing
local features using 3D CNN proposed by Zeng et al. [23].
They employ Siamese Network [11] to constitute their 3D
CNN and make it possible to produce local features from their
3D CNN.

III. PROPOSED METHOD

The overall procedure of our proposed method is illustrated
in Fig. 1. The training and testing stage details (steps (C)
and (D)) extracted from Fig. 1 are shown in Figs. 2 and 3,
respectively. First of all, Fig. 2 shows the flow of the training
stage for the 3D CNN to extract partial shape features, while
Fig. 3 is the flow of the testing stage with the trained 3D CNN.
The extraction of partial shape features is common to both the
training and the testing stages.

1523

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



normaliza�on
extrac�on of  

par�al shapes

voxel 

genera�on

extrac�on of  

par�al shape 

features

Results

(A) (B)

(C) (D)

Similarity 

computa�on
retrieval

(E) (F)(C) (D)

target

query

Extracted 

par�al shape 

features

voxel 

genera�on

extrac�on of  

par�al shape 

features

Fig. 1. Overview of our proposed system for partial 3D shape retrieval

Regarding the proposed method, in III-A, normalization of
the 3D model will be elaborated, while the extraction of the
partial shape model will be elaborated in III-B, generation of
voxels with a local feature will be elaborated in the III-C. In
III-D, we will explain the partial shape features, the similarity
computations in the III-E, and the search in III-F.
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Fig. 2. Flow of training 3D CNN for extracting partial shape feature

A. Normalization of 3D Model
We first normalize the 3D model. This is because 3D

shapes generated by anonymous authors have different sizes,
locations, and orientations in general.

First, position normalization is performed. The 3D model
is translated so that the coordinates of the center of gravity
of the model overlap the origin. Next, size normalization is
performed. The size is normalized so that the 3D model fits
into the unit circle. Calculate the Euclidean distance between
the center of gravity and each point, and obtain the maximum
value. By dividing the coordinates of each point using the
obtained maximum value, the 3D model is converted so as
to fit in the unit circle. Next, consider the normalization of

the orientation. Normalization of orientation is performed by
PointSVD [20] which consists of point cloud generation and
singular value decomposition.

Specifically, normalization is performed based on the fol-
lowing equation. First, it can be assumed that the 3D model
consists of a triangular mesh without loss of generality.
Therefore, we generate random points on the surface of the
3D model as m point clouds [15].
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Fig. 3. Flow of a test stage with trained 3D CNN

Here, the coordinates of the points p, uniformly distributed
on the surface of the 3D model, are computed from the
coordinates of the triangles a,b,c as shown in the following
formula:

p = (1−
√
r1)a+

√
r1(1− r2)b+

√
r1r2c

Bratley [2] uses pseudo random numbers such as Sobol
or Niederreiter for the two random numbers r1 and r2 in
the above expression. Next, find the rotation matrix Q which
determines the center of gravity g of the 3D model. An average
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value of the generated point cloud is obtained, and it is set as
the centroid.

g =
1

m

m∑
i=1

p(i)

Then, we translate the point cloud such that the centroid
moves to the origin, and denote the point cloud matrix by P .

P =

p
(1)
x − gx p

(2)
x − gx . . . p

(m)
x − gx

p
(1)
y − gy p

(2)
y − gy . . . p

(m)
y − gy

p
(1)
z − gz p

(2)
z − gz . . . p

(m)
z − gz


We then apply Singular Value Decomposition (SVD) to the

point cloud matrix P .

P = UΣWT

where U and W are 3× 3 orthogonal matrices, Σ is a 3× 3
diagonal matrix, having its singular values in descending order.

The rotation matrix Q is computed by taking the transpose
of the left singular vectors as represented by U .

Q = ÛT

We compute the reflection matrix F from the rotated point
sets P ′, where P ′ = QP as follows:

Q = ÛT

Finally, we compute the reflection matrix F from the rotated
point sets P ′, where P ′ = QP as follows:

F =

sign(fx) 0 0
0 sign(fy) 0
0 0 sign(fz)


where

fx =
m∑
i=0

sign(p′
(i)
x )(p′

(i)
x )2 (fy ,fz are similarly defined.)

The size and location invariance is achieved by transforming
the matrix V into V ′ with k number of points, where V is
a matrix already having rotational and reflective invariance as
listed below:

V =

v
(1)
x − gx v

(2)
x − gx . . . v

(k)
x − gx

v
(1)
y − gy v

(2)
y − gy . . . v

(k)
y − gy

v
(1)
z − gz v

(2)
z − gz . . . v

(k)
z − gz


V ′ = FQV

It should be noted that the size invariance is achieved by taking
the distance between the centroid and an arbitrary point on the
surface divided by the largest distance between the centroid
the farthest point on the surface if we put the 3D object in a
unit sphere centered at the centroid.

B. Extraction of Partial Shape

In the partial search, the search query is a partial shape
model obtained by 3D scanner, and the search target is a
perfect model. Since it is difficult to directly compare them,
the proposed method extracts the partial shape model from the
perfect model and compares the extracted partial shape model
with the search query.

Extraction of partial shape model is performed using our
prior method [10]. In the proposed method, we simulate the
case of looking at the 3D model from a certain viewpoint
and extract the visible part. In our previous method,3D partial
shape extraction is performed with 66 viewpoints. Here, for
the sake of speeding up, a partial shape model is extracted
from 38 viewpoints.

For the extracted partial shape model, normalization de-
scribed in the III-A section is also performed.

C. Voxel Generation

We first randomly pick up the “representative points” on the
3D shape model.

We adopt FPFH (Fast Point Feature Histogram) and
3DMatch as our local features. FPFH was introduced in the
mobile robotics field as the local feature of the 3D model [17],
while 3DMatch was introduced by 3D object recognition /
reconstruction [23]. They are served as local features for
partial search of the 3D shape model.

1) Local Angular Features: Here we adopt FPFH as our
first local shape feature. FPFH is implemented as follows:

In the FPFH, a 3D local shape is obtained by computing
the histograms of the following three angles as shown in :α,
ϕ, θ of equation (1)

α = v · nt

ϕ = u · (pt − ps)

d
(1)

θ = arctan

(
w · nt

u · nt

)
where ps is a representative point, pt is its neighbor, ns is a
normal to ps, nt is a normal to pt, d is an Euclidean distance
between ps and pt.

Unit vectors u, v, and w, perpendicular to each other, are
computed by equation (2).

u = ns

v = u× (pt − ps)

∥pt − ps∥2
(2)

w = u× v

In fact, with regard to the three angular features computed
from α, ϕ, θ, we calculate all neighboring points within
the radius r of the representative point and compute them
appropriately. The meaning of the three angles to be converted
into the histogram with H bins is as follows: α is the cosine
of the angle between the normal vector at the representative
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point and the v axis, ϕ is the cosine of the angle between
the neighboring point and the tangent vector u from the
representative point, θ, from the u axis at the representative
point w, representing the elevation angle looking up at the
axis. Let this concatenation be SPFH of its representative
point.

Finally, we obtain FPFH from SPFH by the following
formula. The formula for finding the FPFH of the point pq

is as follows:

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

1

ωi
· SPFH(pi)

Here, ωi represents the distance between pq and pi. k is
the number of neighboring points, determined by the radius
r. FPFH is defined as the weighted average of k number of
SPFH. Please note that FPFH is a 3×H dimensional vector,
where H is the number of bins mentioned above.

2) Local Shape-Pair Feature (LSPF): The second feature
we adopt is based on 3DMatch. Since 3DMatch employs
“Siamese architecture”, i.e. a pair of local patches, we here
introduce “local shape-pair feature” (LSPF).The procedure
for obtaining this local feature is as follows: First, a cube
whose center is a representative point and whose length is l
is generated. A point cloud existing inside the generated cube
is extracted.

Next, the extracted point cloud is converted into local voxel
data. Here, the generated local voxel data is called a patch.
With this patch as an input, a pair of two patches are fed into
a Siamese. We train this Siamese Network [3]. After training,
it can be used as a feature extractor that receives a pair of
patches as input and produces a local feature as output.

In our proposed method, we have added a new idea to
reduce the influence of the orientation on this local shape
pair feature, as illustrated in Fig. 4.With the original definition
of 3DMatch, there is a problem that the feature changes
depending on the direction in which the patch is extracted.
On the other hand, here we would like to judge to see if
two patches are approximately equal if by applying shape-
preserving transformation, one patch nearly coincides with the
other If this is the case, the local shape pair features of the
representative point pairs would have similar values. In order
to make the above happen, after extracting the point clouds,
we have inserted a new process of normalizing orientation
using PointSVD mentioned in III-A. Please note that in the
FPFH mentioned in the previous section, this process is not
performed because similar features can be naturally obtained
due to the fact that the FPFH keeps the angular relationship
even when the 3D shape is rotated or is translated. The local
shape pair feature we extract from the last 3D convolutional
layer is of size 1 × 1 × 1 × M , where M is the number of
feature maps, which can be interpreted as an M dimensional
vector

x

Fig. 4. An example of a pair of patches; we would like to judge to
see if two patches are approximately equal if by applying shape-preserving
transformation, one patch nearly coincides with the other

3) Voxel Generation from Local Features: Local features
defined in the previous two sections cannot be directly fed
to 3D CNN. First, we randomly select K representative
points on any given 3D model. Once a representative point
is selected, local feature vectors at the point are computed.
Since the local feature vectors are sparse, we apply Principal
Component Analysis (PCA) to feature vectors in order to
reduce their dimension. Subsequently, we convert the reduced
feature vectors to 3D voxels.

After repeating the computation of local features at
the representative points, we generate voxels of size
L timesL timesL. It should be noted that when a voxel
is generated, ordinarily we expect each voxel has one local
feature. However, there are two cases needed for special
attention: (1) a voxel has two or more local features, and (2) a
voxel has no local features. For case (1), we take the average
of the local features for each voxel, and the result is set as the
local feature. For case (2), we set the voxel value to 0 vector.

D. Partial Shape Feature

The partial shape feature is defined as the output of the
second to the last fully connected layer (FC) of 3D CNN
after training, where 3D CNN is a 3D extension of the
Convolutional Neural Network (CNN) used for images [9].

E. Similarity Computation

Let q be the feature vector of the search query, and let T be
the set of feature vectors given by multiple viewpoints. Here
we compute the cosine similarity between q and the feature
vector t ∈ T , which is the feature vector from the database
to be searched. The computed cosine similarities are sorted in
descending order, where we define the final similarity S(q, T )
as shown in equation (3).

S(q, T ) = max
t∈T

s(q, t) (3)

s(q, t) =
q · t
|q||t|

We perform the ensemble of local angle and local shape
pair features. For each local feature, the similarity between the
search query and the search target is computed. Final similarity
is defined by the average of all the similarities.
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F. Retrieval

The similarity computation in Section III-E is performed for
all of the search targets. We then sort the results in descending
order. The search result is the output of the sorting.

IV. EXPERIMENTS

In this section, we describe datasets in Section IV-A, the
implementation details in Section IV-B, the evaluation measure
in Section IV-D, the 3D CNN training method in Section IV-C,
the comparison of our proposed method with previous methods
in Section IV-E, and the results in Section IV-F.

A. Dataset

The dataset we use was SHREC 16 Partial dataset [16]. The
dataset is divided into 6 classes, and contains 383 perfect 3-
dimensional models as search targets, 192 queries. The query
dataset has three major different types: Artificial (Fig. 5),
Breuckmann (Fig. 6), and Kinect (Fig. 7).

Artificial is a complete model made by humans, where
partial shapes of Artificial are generated by artificially cut
the complete part. Thus, each partial shape has a clear cross
section. Artificial is divided into two groups, Q25 and Q40.
Q25 has a partial shape of 25% of the overall shape and
40% of Q40. Here we conducted an experiment using only
Q40. Breuckmann is generated by SmartScan’s Breuckmann
Scanner which is a highly accurate range scanner. Kinect
is generated by Microsoft’s Kinect V2 sensor, which is a
low accuracy range scanner. Breuckmann and KINECT data
provided with three different view groups; View 1, View 2,
and View 3. In our experiments, we employed only View 1.

Fig. 5. An example of Artificial data. Cross section is artificially severed.

Fig. 6. An example of Breuckmann data acquired by high resolution 3D
scanner

Fig. 7. An example of Kinect data. Scanned mesh is coarser than Breuckmann

B. Implementation Details

In this experiment, we pick up 500 “representative points”,
i.e. k = 500. For FPFH, we set 11 bins for the histogram of
each angle, which amounts to 33 dimension, because we have
three angles α, ϕ, and θ . For the radius parameter of FPFH,
we set the radius r = 3 empirically to search for neighboring
points.

On the other hand, for LSPF, we employed Analysis-by-
Synthesis [21], 7Scenes [18], SUN3D [22], RGB-D Scenes
v.2 [13], and Halber et al.[7], for training the 3D CNN on
which 3DMatch is dependent. For the dimension of LSPF, we
set M = 512, and the patch length l = 0.3.

For the training of PCA, we used 3d pottery dataset [12]. It
should be noted that PCA is applied to both FPFH and LSPF.
In case of FPFH, we use PCA to reduce dimension from 33
to 8, while in case of LSPF, we use PCA to reduce dimension
from 512 to 8. In both cases, we confirm that the cumulative
contribution rate becomes more than 95 %.

In Fig. 8, the red graph corresponds to the FPFH, while the
blue graph corresponds to the LSPF.

On the other hand, we set voxel size L = 8. For the
dimension of the vector we extract from 3D CNN, we chose
the layer which was the second to the last, and its dimension
was 256. At this time, L2 normalization was performed on the
obtained partial shape features.

Fig. 8. Cumulative contribution rate
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C. Training 3D CNN

Training of 3D CNN was performed using 3dpottery dataset.
The 3dpottery dataset contains 36 classes, 1012 models. Of
these classes, excluding “other” classes, we select classes
that contain 5 or more models, and we randomly extract five
models from those classes. As a result, we train 3D CNN using
22 class 110 models. Classes with extremely small numbers
of data were eliminated, and in addition, the imbalance in the
number of data for each class was resolved. For the data used
for training, the same processing (i.e. (A), (B), (C), and (D)
in Fig. 1) as the search target was performed. Since 38 partial
shape models are extracted from one model, the final number
of training data is 4,180.

The learning rate was 0.001, the optimizer was Adam, and
the epoch was 10.

D. Evaluation Measure

As evaluation measure, we employ Nearest Neighbor (NN),
First Tier (FT), Second Tier (ST), Discounted Cumulative Gain
(DCG).

NN is referred to as P@1, and can be computed by

Nearest Neighbor (NN) = rel(1)

Here, rel(k) is the number of 3D objects belonging to the
same class as the search query included in the search high-
order k items. NN is an evaluation measure indicating the
relevance ratio of the top search result.

FT is also called R-precision. The formulae of FT and ST
are as follows.

First Tier (FT) =
rel(c− 1)

c− 1

Second Tier (ST) =
rel {2(c− 1)}

c− 1

Here, c is the number of 3D models belonging to the same
class as the search question. par DCG is an evaluation measure
showing how much the ranking of correct answer data can be
reproduced including rank. As the DCG value increases, more
often relevant data are appearing around the top of the ranking.

DCG(i) =

{
G(1) (i = 1)

DCG(i− 1) + G(i)
log2(i)

(otherwise)

DCG@N =
DCG(N)

1 +
∑N

j=2
1

log2(j)

Here, i is the rank, G is the relevant data list, and N is the
total number of 3D models.

E. Comparison with Previous Methods

For the previous methods for comparison, VoxNet [14], Tran
et al [16], RSVP [5] are used, where VoxNet had 32×32×32
binary voxels. To match the condition of VoxNel with our
proposed method, when we use VoxNel, the processes (C)
and (D) of Fig. 1 are replaced by VoxNet.

F. Experimental Results

Experimental results using Artificial is summarized in Table
I, while experimental results using Breuckmann is summarized
in Table II. Experimental results using Kinect is summarized
in Table III.

G. Discussion

As shown in Tables II and III, we outperformed the previous
methods in terms of FT, ST, and DCG@383. Meanwhile, for
Artificial data, our method was not performed very well. We
speculate that the reason for the low precision of Artificial lies
in the extraction method of parts. Our proposed method for
extracting partial shapes is best suited for a 3D object obtained
by 3D scanners, because with such a device the partial shape
is exactly corresponding to the visible area taken from the
camera attached to these devices.

When comparing Breuckmann and Kinect which is data
obtained from a 3D scanner, Breuckmann overall has higher
accuracy. This is because the difference between the obtained
local feature and the local feature obtained from the search
object is large because Kinect’s data has a rough mesh,
such differences did not occur in Breuckmann. Ensemble was
effective in many cases, but it was not effective when extreme
difference in accuracy exists between the local angle feature
and the local shape pair feature. We speculate that this is due
to the fact that the results on the side with lower precision
have been pulled.

TABLE I
RESULTS WITH ARTIFICIAL (Q40)

Method NN FT ST DCG@383
KAZE+VLAD 0.76 0.50 0.74 0.80
Tran et al 1.00 0.52 0.71 0.82
RSVP 0.90 0.49 0.71 0.82
VoxNet 0.33 0.36 0.65 0.73
Proposed(LAF) 0.62 0.48 0.74 0.81
Proposed(LSPF(w/o PointSVD)) 0.24 0.19 0.37 0.62
Proposed(LSPF) 0.24 0.21 0.36 0.64
Proposed(Ensemble) 0.48 0.36 0.58 0.74

TABLE II
RESULTS WITH BREUCKMANN (VIEW1)

Method NN FT ST DCG@383
KAZE+VLAD 0.24 0.29 0.58 0.69
Tran et al 0.56 0.32 0.52 0.69
RSVP 0.36 0.33 0.55 0.68
VoxNet 0.36 0.38 0.67 0.75
Proposed(LAF) 0.48 0.45 0.70 0.78
Proposed(LSPF(w/o PointSVD)) 0.40 0.35 0.60 0.73
Proposed(LSPF) 0.44 0.39 0.63 0.75
Proposed(Ensemble) 0.52 0.45 0.69 0.78
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TABLE III
RESULTS WITH KINECT (VIEW1)

Method NN FT ST DCG@383
KAZE+VLAD 0.20 0.24 0.55 0.66
Tran et al 0.60 0.40 0.61 0.76
RSVP 0.08 0.21 0.49 0.62
VoxNet 0.48 0.37 0.61 0.75
Proposed(LAF) 0.44 0.38 0.63 0.74
Proposed(LSPF(w/o PointSVD)) 0.32 0.35 0.57 0.72
Proposed(LSPF) 0.48 0.37 0.59 0.74
Proposed(Ensemble) 0.48 0.43 0.67 0.78

V. CONCLUSION

In this paper, we propose a 3D partial shape retrieval method
using 3D CNN with two different local feature vectors as input
after dimensional reduction with PCA. Experimental results
demonstrate that our proposed method is particularly effective
for 3D partial shape model2 acquired by 3D scanners.

Future research includes enhancement of the network struc-
ture that can deal with 3D volumetric data in addition to the
current 3D CNN we have employed, exploration of additional
local features, and the additional experiments using other 3D
datasets such as mechanical parts and 3D scenes where “partial
3D shape retrieval” is highly required.
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