
Estimation of Collusion Attack in Bias-based
Binary Fingerprinting Code

Tatsuya Yasui∗, Minoru Kuribayashi∗, Nobuo Funabiki∗, and Isao Echizen†
∗ Okayama University, Okayama, Japan

E-mail: {yasui.tatsuya@s., kminoru@, funabiki@}okayama-u.ac.jp
† National Institute of Informatics, Tokyo, Japan

E-mail: iechizen@nii.ac.jp

Abstract—An optimal detector known as MAP detector has
been proposed for the probabilistic fingerprinting codes such
as Tardos and Nuida codes. However, it needs two kinds of
important information. One is the collusion strategy which is
used at the generation of a pirated codeword from colluders’
codewords, and the other is the number of colluders. In this study,
we propose an estimator which outputs these two parameters
from a pirated codeword. At the estimation, we measure a bias
in the pirated codeword by observing the number of symbols
“0” and “1”, and compare with possible bias patterns calculated
from collusion strategies and number of colluders. As a result
of computer simulation, it is confirmed that a collusion strategy
and number of colluders can be estimated with high probability.
In addition, it is revealed that the traceability of the detector
using the proposed estimator is extremely close to the optimal
detector.

I. INTRODUCTION

In the collusion-secure codes [1], Tardos code [2] is known
as bias-based fingerprinting code such that each symbol of a
codeword is determined by a certain biased probabilistic distri-
bution. As the code length has been proven to be theoretically
minimum order, the Tardos code has been intensively investi-
gated to further improve the performance in the viewpoints of
traceability as well as the code length. In particular, Nuida et
al. [3], [4] constructed an interesting variants using a discrete
probabilistic distribution(Gauss-Legendre distribution) to cus-
tomize the bias-based fingerprinting code for a fixed number
of possible colluders. For convenience, this fingerprinting code
is called Nuida code in this paper.

In order to identify illegal users called colluders from a
pirated codeword, a tracing algorithm called detector finds
suspicious users by calculating similarity with their code-
words. The detector can be classified into 3 types: catch-one,
catch-many, and catch-all [5]. In case of catch-one, the most
suspicious user whose similarity score becomes maximum
is detected as guilty. As we assume a collusion of some
illegal users, a catch-many type detector is desirable because
it can identify as many illegal users as possible. Although
all colluders can be identified in case of catch-all, its false-
negative rate that no colluder is detected must be higher.
Therefore, we focus on the catch-many type detector in this
study.

A good tracing algorithm can catch as many colluders as
possible with a constant and small false-positive rate. The

tracing algorithm is essentially composed of two operations.
One is the scoring function which calculates similarity scores,
and the other is the classification using a threshold. Even if
colluders can choose an arbitrary collusion strategy such as
majority and minority voting to generate a pirated codeword
from their codewords, the Tardos’s and its revised scoring
functions [6] are independent on the collusion strategy, and
hence, their performance is not high. According to an in-
formation theoretical analysis, an optimal detector which can
calculates a best score has been proposed by Furon et al. [7]
to utilize the information about the collusion strategy and the
number of colluders. Because of the difficulty at the estimation
of these parameters [7], some researchers [8], [9], [10], [11]
investigated a defense strategy to minimize the performance
gap from the optimal detector.

In this study, we proposed an effective estimator for these
parameters by using the characteristics of discretized proba-
bilistic distribution of Nuida code. This estimator is composed
of two steps. At the first step, we observe the bias of symbol
“1” in a pirated codeword and make a feature vector accord-
ing to the characteristics of bias-based fingerprinting code.
Essentially, each symbol of codeword is determined by each
assigned bias probability. Therefore, the bias of symbol “1”
in each symbol of innocent users’ codewords is statistically
stable and depend only on the bias probability. On the other
hand, the bias in a pirated codeword is different and is
affected by the collusion strategy and number of colluders.
Because the candidates for the bias probability in Nuida code
is finite, we classify the symbols in a pirated codeword into
groups having same bias probabilities. Then, we calculate
each expected probability that the symbols in a group become
”1” after a collusion attack. For each collusion strategy and
number of colluders, the set of the expected probabilities are
different. For convenience, such a set is defined as a Collusion
Strategy Characteristic Vector (CSCV). At the second step,
we try to find the closest CSCV which distance from the
feature vector becomes minimum to estimate the collusion
strategy and number of colluders. As a result of this study,
the estimation accuracy becomes more than 90 percent in well-
known 7 collusion strategies and the traceability is fairly close
to the optimal one.

1550

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

TABLE I
EXAMPLE OF THE DISCRETE NUIDA CODE BIAS DISTRIBUTION.

cmax Pξ Qξ cmax Pξ Qξ

1, 2 0.50000 1.00000

7, 8

0.06943 0.24833

3, 4
0.21132 0.50000 0.33001 0.25167
0.78868 0.50000 0.66999 0.25167

5, 6
0.11270 0.33201 0.93057 0.24833
0.50000 0.33598
0.88730 0.33201

II. FINGERPRINTING CODE

This section reviews how to construct the bias-based fin-
gerprinting code and how to design its tracing algorithm. We
also show several collusion strategies to generate a pirated
codeword.

A. Bias-based Binary Fingerprinting Code

The Tardos code [2] is a binary bias-based fingerprinting
code composed of N codewords with L symbols. Let xj =
(xj,1, . . . , xj,i, . . . , xj,L) be a codeword of j-th user, where
xj,i ∈ {0, 1}(1 ≤ i ≤ L) is generated from an independently
and identically distributed random number with a probability
pi such that Pr[xj,i = 1] = pi and Pr[xj,i = 0] = 1− pi. The
probability pi ∈ P follows a certain continuous distribution
over an open unit interval (0,1) called bias distribution.

For the improvement of the performance of Tardos code,
Nuida et al. [3], [4] presented a discrete version of the bias
distribution, which is customized for a given the maximum
number cmax of colluders. Let Lk(t) = (d

dt)
k(t2−1)k/(k!2k)

be the k-th Legendre polynomial, and put L̃k(t) = Lk(2t−1).
Then we define PGL

2k−1 = PGL
2k to be the finite probability dis-

tribution whose values are the k zeroes of L̃k, with each value
p taken with probability η(p(1− p))−3/2L̃′

k(p)
−2, where η is

the normalized constant making the sum of the probabilities
equal to 1.

Similar to the Tardos code, the codewords of Nuida code is
generated by using the bias probability sequence P . Because
of the discrete values, the candidate values for pi ∈ P are
finite, and the number of candidates is ng = ⌈cmax/2⌉.
The numerical examples are shown in Table I, where Pξ

and Qξ, for 1 ≤ ξ ≤ ng respectively denote the values of
discretized probabilities and their emerging probabilities. For
example, when cmax = 8 and the length of the sequence P
is L = 10000, the number of elements which has pi = P2 =
0.33001 is approximately L · Q2 ≈ 2517 in average. Since
each symbol xj,i of users’ codewords is independently and
identically selected under the constraint of Pr[xj,i = 1] = pi,
symbols of a codeword xj can be separated into ng groups
based on pi ∈ P .

B. Collusion attack

Suppose that c colluders attempt to produce a pirated copy
from their fingerprinting codes. Under the marking assumption
[1], a pirated codeword y = {y1, y2, . . . , yL} yi(1 ≤ i ≤ L)
is constructed with collusion strategy. A group of colluders is

denoted by C = {j1, j2, . . . , jc}. The collusion attack is the
process of taking sequences in Ii = {xj1,i, xj2,i, . . . , xjc,i} as
inputs and yield the pirated sequence y as an output. In case
fingerprinting codes were attacked, the marking assumption[1]
states that the colluders have yi ∈ Ii. They cannot change the
bit in the position where all of index in Ii is identical because
their positions are undetectable.

In [12], the collusion attack is defined by the parameter
vector θstr

c = (θstr0 , . . . , θstrc) with θstrλ = Pr[yi = 1|Φ =
λ](0 ≤ λ ≤ c), where Φ ∈ {0, . . . , c} denotes the number
of symbol “1” in the colluders’ copies at a given index.
It is reported in [12] that some collusion strategies have a
deeper impact on the traceability than others and Worst Case
Attack (WCA) which minimizes the achievable rate of the
code is defined from information theoretical point of view.
The marking assumption enforces that θstr0 = 0 and θstrc = 1
in the collusion strategies. In case of c = 6, some typical
examples are shown by the following parameters.

• Majority:
θmaj
6 = (0,0,0,0.5,1,1,1).

• Minority:
θmin
6 = (0,1,1,0.5,0,0,1).

• Coin-flip:
θcoin
6 = (0,0.5,0.5,0.5,0.5,0.5,1).

• All-0:
θall−0
6 = (0,0,0,0,0,0,1).

• All-1:
θall−1
6 = (0,1,1,1,1,1,1).

• Interleave:
θint
6 = (0, 16 , 26 , 36 , 46 , 56 ,1).

• WCA:
θWCA
6 = (0,0.5014,0.1749,0.5,0.8251,0.4986,1).

C. Tracing algorithm

A tracing algorithm called detector is composed of a scoring
function and a classification. We should consider the following
two error rates ϵFP and ϵFN , where the tracing algorithm Tr
outputs suspicious users. ϵFP : false-positive

ϵFP = Pr[Tr(y) /∈ C|Tr(y) ̸= ∅].

ϵFN : false-negative

ϵFN = Pr[Tr(y) ∩C = ∅].

Tardos proposed the following scoring function.

Sj =
L∑

i=1

Sj,i =
L∑

i=1

yiUj,i, (1)

where

Uj,i =

−
√

pi
1− pi

(xj,i = 1),√
1− pi
pi

(xj,i = 0).

(2)

At the classification, only one suspicious user whose score
becomes maximum is determined as an illegal user in catch-
one type. The scoring function in Eq. (1) can be applied for the

1551

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

Nuida code. Unfortunately, the scoring function only uses half
of information about a pirated codeword because the value of
the score Sj,i becomes zero when yi = 0. In order to utilize
the entire information, Škorić et al. [6] proposed the following
symmetric version of the scoring function.

Ssym
j =

L∑
i=1

Ssym
j,i =

L∑
i=1

(2yi − 1)Uj,i, (3)

The above scoring functions need no information about the
collusion strategy θstr

c and the number c of colluders. In order
to discriminate colluders from innocents, an optimal scoring
function should be designed by using these parameters from
the information theoretical point of view. In [7], the optimal
scoring function is given by the following log-likelihood ratio,

SMAP
j =

L∑
i=1

SMAP
j,i =

L∑
i=1

log

(
Pr[yi|xj,i,θ

str
c]

Pr[yi|θstr
c]

)
. (4)

As the above score calculates the maximum a posteriori prob-
ability, the optimal scoring function is called MAP detector.
The denominator Pr[yi|pi,θstr

c] can be calculated by Pr[1|θstr
c] =

c∑
ρ=0

θstrρ

(
c

ρ

)
pρi (1− pi)

c−ρ,

Pr[0|θstr
c] = 1− Pr[1|θstr

c].

(5)

Similarly, the numerator Pr[yi|xj,i, pi,θ
str
c] can be calculated

as follows:

Pr[1|1,θstr
c] =

c∑
ρ=1

θstrρ

(
c− 1

ρ− 1

)
pρ−1
i (1− pi)

c−ρ,

Pr[0|1,θstr
c] = 1− Pr[1|1,θstr

c],

Pr[1|0,θstr
c] =

c−1∑
ρ=0

θstrρ

(
c− 1

ρ

)
pρi (1− pi)

c−ρ−1,

Pr[0|0,θstr
c] = 1− Pr[1|0,θstr

c].

(6)

The difficulty in designing such an optimal scoring func-
tion is how to estimate the collusion strategy θstr

c and the
number c of colluders from a given codeword y. Although,
these parameters are estimated by using an Expectation-
Maximization(EM) algorithm in [7], its accuracy is not high.
To the best of our knowledge, there is no other study to
investigate the estimator.

D. Threshold

Some suspicious users whose score exceeds a threshold Z
are regarded as illegal users in a catch-many type detector.
Some methods approximate the distribution of user’s score Sj

by the Gaussian distribution [14] to calculate the threshold for
satisfying a given false-positive probability. With the increase
of the length of users’ codewords, we can approximate it
more accurately. However, it is reported in [15] that such
an approximation is not appropriate for the calculation of
threshold to suppress the false-positive rate to be less than ϵFP

because the tail part of the Gaussian distribution is not accurate
with the short length of codeword. For the purpose of accurate
measurement the tail part, Furon et al. [12] proposed an

efficient method for estimating the probability of rare events,
which is called rare event simulator. We can estimate the ϵFP

for a given threshold Z by this method, which means that we
calculate the mapping ϵFP = F (Z).

III. CONVENTIONAL STUDY

We discuss the universal scoring function that the per-
formance for arbitrary collusion strategy is higher than the
uninformed scoring function like Škorić’s symmetric scoring
function. Because of the difficulty of realization of MAP
detector, the scoring function has been adjusted for a certain
collusion strategy to achieve the universality [8], [9], [10],
[11]. On the other hand, the bias of symbols “0” and “1” is
observed and the score is calculated introducing the weights
corresponding to biases in the Škorić’s scoring function in
[13]. In this section, we review two examples of scoring
function for our proposed estimator.

A. Scoring Function Based on MAP

A simple conversion from the MAP detector is to fix the
collusion strategy θstr

c at the scoring function. In [8], under an
assumption that the actual number of colluders c is less than
or equal to cmax, Meerwald et al. [8] calculated the correlation
scores for c selected from [1, cmax], where the scoring function
is based on the MAP detector designed for WCA θWCA

t (1 ≤
t ≤ cmax). The score SMee

j,i is determined by one of the cmax

candidates which value becomes maximum.

SMee
j =

L∑
i=1

max
1≤t≤cmax

(
log

Pr[yi|xj,i,θ
WCA
t]

Pr[yi|θWCA
t]

)
. (7)

Similarly, Desoubeaux [9] designed the scoring function for
coin-flip attack defense and summed cmax candidates

SDes
j =

L∑
i=1

log

(
cmax∑
t=1

t ·
(
Pr[yi|xj,i,θ

coin
t]

Pr[yi|θcoin
t]

))
. (8)

B. Bias Equalizer

In binary fingerprinting codes, the number of symbols
“0” and “1” is balanced because of the symmetry of bias
probability pi. However, it is not always balanced in a pirated
codeword. Considering the imbalance caused by a collusion
attack, the Skoric’s scoring function is revised by equalizing
the balance using weighting parameters in [13], which is called
Bias Equalizer. Let Y1 and Y0 be the set of indices i satisfying
yi = 1 and yi = 0, respectively. Then, the number of elements
in Y1 and Y0 are denoted by L1 and L0, respectively, where
L1+L0 = L. Because of the symmetry of a bias distribution,
it is expected to be L1 = L0 unless colluders do not know the
actual values xj,i of their codewords. Therefore, in case of y
produced by “all-0” and “all-1”, L1 is not always equal to L0

in a real situation. The number of elements in ξ-th group is
denoted by ℓξ, where ℓξ ≥ 0 and

∑ng

ξ=1 ℓξ = L. Besides, the
number of symbols “1” and “0” are denoted by ℓξ,1 and ℓξ,0,
respectively. Notice that ℓξ,1+ℓξ,0 = ℓξ. As an example, when
cmax = 8, the classification of ng = 4 groups is illustrated

1552

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

Fig. 1. Number of symbols “0” and “1” in a pirated codeword.

in Fig.1. Using those parameters, the scoring function in Bias
Equalizer is showed by the following score.

SBias
j,i,ξ = yi

U00
j,i =

ℓξ,1
ℓξ

√
pi

1− pi
(xj,i = yi = 0),

U01
j,i = −ℓξ,0

ℓξ

√
pi

1− pi
(xj,i = 1, yi = 0),

U10
j,i = −ℓξ,1

ℓξ

√
1− pi
pi

(xj,i = 0, yi = 1),

U11
j,i =

ℓξ,0
ℓξ

√
1− pi
pi

(xj,i = yi = 1).

(9)
In order to adjust the above weighting parameters according to
the gap for the all-0, all-1, minority, and coin-flip attacks, the
collusion strategy by the following conditions observed from
y which all-0 or all-1 attack is performed.{

ℓξ,0 ≈ ℓξ, if pi < 0.5 holds for all ξ
ℓξ,1 ≈ ℓξ, if pi > 0.5 holds for all ξ (10)

For the classification of all-0 and all-1 attack, a threshold T †

is used to check the following two cases:
ℓξ,0
ℓξ

> T † (pi < 0.5),

ℓξ,1
ℓξ

> T † (pi > 0.5).
(11)

Note that T † is close to 1 because of relation given by
Eq.(10). In the paper [13], the threshold T † was empirically
determined: T † = 0.95. When the minority or coin-flip attack
strategy is performed, the following relations can be observed
for ξ-th group.

ℓξ,0
ℓξ,1

<

√
1− pi
pi

(pi < 0.5),

ℓξ,1
ℓξ,0

<

√
pi

1− pi
(pi > 0.5).

(12)

Even though the Bias Equalizer improves the performance of
scoring function, the classification of collusion strategies was
not theoretically investigated.

TABLE II
VALUE OF COLLUSION STRATEGY CHARACTERISTIC VECTORS IN CASE OF

c = 6.

Γstr
6

ξ

γstr
6,1 γstr

6,2 γstr
6,3 γstr

6,4

str

Γ
maj
6 0.0030 0.2050 0.7950 0.9970

Γmin
6 0.3476 0.7059 0.2941 0.6524

Γcoin
6 0.1753 0.4554 0.5446 0.8247

Γall0
6 0.0000 0.0013 0.0905 0.6494

Γall1
6 0.3506 0.9096 0.9987 1.0000

Γint
6 0.0694 0.3300 0.6700 0.9306

ΓWCA
6 0.1581 0.3747 0.6253 0.8418

IV. PROPOSED ESTIMATOR

This section shows how to estimate the collusion strategy
θstr
c and the number c of colluders for the optimal detector

(MAP). We exploit the bias in a pirated codeword at the
estimation.

A. Collusion Strategy Characteristic Vector (CSCV)

When a pirated codeword is produced by a combination of
some codewords under the constraint of marking assumption,
the number of symbols “0” and “1” must be changed. We
measure the amount of changes according to the discrete bias
probability.

The emerging probability Pξ, (1 ≤ ξ ≤ ng) is statistically
equivalent to ℓξ,1/ℓξ for each user’s codeword. Hence, if we
observe the number of symbols in a codeword, the following
condition must be satisfied:

(P1, . . . , Pξ, . . . , Png) ≈

(
ℓ1,1
ℓ1

, . . . ,
ℓξ,1
ℓξ

, . . . ,
ℓng,1

ℓng

)
(13)

On the other hand, the right term in Eq.(13) will be changed in
a pirated codeword and the amount of changes in each element
depends on the collusion strategy and the number of colluders.
For convenience, the vector observed from a pirated codeword
is denoted by

Γ = (γ1, . . . , γξ, . . . , γng
),where γξ = ℓξ,1/ℓξ. (14)

The expectation of elements in Γ can be calculated from θstrc

and c:

γstr
c,ξ =

c∑
t=1

(
c

t

)
P t
ξ (1− Pξ)

c−tθstrt (15)

The vector Γstr
c = (γstr

c,1 , . . . , γ
str
c,ξ , . . . , γ

str
c,ng

) is called Collu-
sion Strategy Characteristic Vector (CSCV). Under the mark-
ing assumption, Eq.(15) enables us to express Γstr

c of every
general collusion strategy we can conceive. Some examples
for typical collusion strategies are shown in Table II, where
cmax = 8 for Nuida code and the actual number of colluders
is c = 6. Different from these thresholds, we measure the
distance from the feature vector Γ to find the closest Γstr

c for
possible collusion strategies.

1553

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

TABLE III
ACCURACY OF ESTIMATOR IN A BASIC METHOD WHEN c IS KNOWN.

(a) Dstr,c
1

Dstr,c
1

number c of colluders
2 3 4 5 6 7 8

θstr
c

maj 100 100 100 100 100 100 100
min 0 99.8 100 100 100 100 100
coin 0 90.3 55.7 97 99.5 100 100
int 0 97.2 100 100 100 100 100
all0 100 100 100 100 100 100 100
all1 100 100 100 100 100 100 100

WCA 0 91.3 57.4 95.7 99.7 100 100

(b) Dstr,c
2

Dstr,c
2

The number c of colluders
2 3 4 5 6 7 8

θstr
c

maj 100 100 100 100 100 100 100
min 0 99.8 100 100 100 100 100
coin 0 89.4 57.7 96.8 99.7 100 100
int 0 96.8 99.9 100 100 100 100
all0 100 100 100 100 100 100 100
all1 100 100 100 100 100 100 100

WCA 0 93.4 57.8 95.8 99.8 100 100

TABLE IV
COMPARISON OF VALUES WHICH CALCULATED BY ESTIMATOR IN CASE OF

c = 4(MAJORITY, COIN-FLIP, WCA).

str γ4,1 γ4,2 γ4,3 γ4,4

majority 0.013792 0.254839 0.745161 0.986208
coin-flip 0.125068 0.405181 0.594819 0.874932

WCA 0.122175 0.401272 0.598728 0.877825

B. Basic Method

Let Dstr,c be the distance between the observed vector Γ
and the CSCV Γstr

c . Notice that Γstr
c can be calculated in

advance and can be stored at a database. In the classification
of collusion strategy and number of colluders, we calculates
Dstr,c for all strategies θstr

c , and find the one which Dstr,c

becomes minimum.

θ ˜str
c = argmin

str,c
Dstr,c. (16)

Well-known metrics for distance are the Manhattan distance
and the Euclidean distance:

Dstr,c
1 =

∑
ξ

|γstr
c,ξ − γξ|, (17)

Dstr,c
2 =

√∑
ξ

(
γstr
c,ξ − γξ

)2
. (18)

We store Γstr
c (cmin ≤ c ≤ c′max) with general collusion

strategy into the database, where cmin and c′max are the
minimum and maximum number of colluders that we assume,
respectively.

C. Dynamic Method

The proposed estimator searches possible collusion attacks
by using CSCVs stored in a database, namely it is a kind
of exhaustive search. Instead of the exhaustive search, we
proposed a dynamic estimation method based on the idea in
[8], which calculates a set of user’s scores for some candidate
number of colluders and outputs the one which score becomes
maximum. We first estimate the strategy θ ˜str

c for a given
c (cmin ≤ c ≤ c′max) by Eq.(16). Then, with all estimated
strategy θ ˜str

c for c, we calculate the score Sj,i and select the
maximum score. Finally, the total score Sj is obtained by the
summation of them. The following process is how to determine
the user j-th score in this method.

1) Initialize c = cmin.
2) Input c and estimate θ ˜str

c in Eq.(16).
3) Increment c = c+ 1.
4) If c = c′max, go to next process; otherwise go to process

1.
5) Calculate the score Sj by the following equation.

Sj =
L∑

i=1

max
cmin≤t≤c′max

(
log

Pr[yi|xj,i,θ
˜str

t]

Pr[yi|θ ˜str
t]

)
. (19)

For convenience, the estimator presented in Section IV-B is
called basic method, and the dynamic estimator explained
above is called dynamic method.

V. EXPERIMENTAL RESULTS

In this section, for the comparison of the performance
of proposed two methods, we perform a simulation. The
experimental setup is the followings. The number of users
in a system is N = 106, and a codeword of length
L = 2048 is assigned to a user. We use the Nuida code
designed by cmax = 8 and the false-positive probability
is fixed to be ϵ = 10−10 by using a rare event simulator
[15]. The candidates of collusion strategies are str =
{majority, minority, coin-flip, all-0, all-1, interleave, WCA},

and the number of colluders ranges from cmin = 2 to
c′max = 10. Pirated codewords are produced by collusion
attack on randomly selected 103 combinations of c colluders.

Assuming that the number c of colluders is known in ad-
vance, the accuracy of estimator in basic method is measured.
Table III shows the accuracy of estimated collusion strategies
calculated by Dstr,c

1 and Dstr,c
2 distances for 2 ≤ c ≤ 8,

respectively. The more the number of colluders increase, the
higher accuracy of estimation is. However, in case of c = 4 and
coin-flip or WCA strategy, the accuracy is dropped because of
the similarity between Γcoin

4 and ΓWCA
4 . Table IV shows that

the comparison of Γmaj
4 , Γcoin

4 and ΓWCA
4 . It is known from

the preliminary experiment that the impact of misestimation
of coin-flip and WCA is much less than any other strategies.
We determined to use the Dstr,c

1 because the impact of coin-
fips is much less than WCA one.

Table V shows the sum of detected colluders for 2 ≤ c ≤ 10,
where the maximum is 54 =

∑10
c=2 c. In case of MAP detector,

1554

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

TABLE V
COMPARISON OF SUM OF DETECTED COLLUDERS FOR 2 ≤ c ≤ 10.

majority minority coin-flip interleave all-0 all-1 WCA total
Symmetric [6] 14.67 13.31 13.87 14.33 13.88 13.92 14.01 97.99
MAP(optimal) 45.31 54.00 23.14 21.87 53.85 53.84 17.98 269.98
Basic Method 45.31 54.00 22.73 21.74 53.85 53.85 17.86 269.33

Dynamic Method 45.23 54.00 22.97 21.88 53.86 53.87 17.95 269.74
Meerwald [8] 18.91 23.07 20.32 18.67 20.09 20.14 17.94 139.14

Bias Equalizer [13] 45.11 53.81 19.16 21.34 52.39 52.30 16.41 260.52

the collusion strategy and the number of colluders are in-
formed, and hence, the number of detected colluders in MAP is
the theoretical upper limit. It is observed that the result exceeds
the limit for all-1 attack in the proposed methods. It is because
of the probabilistic algorithm in the rare event simulator [15]
at the calculation of the threshold. If the number of trials is
increased, such a case will not be occurred. It is observed that
the traceability of basic and dynamic method is very close to
the optimal detector (MAP) for all collusion strategies. In the
comparison of proposed two methods, the dynamic method is
better than the basic method without majority attack.

VI. CONCLUSION

In this paper, we proposed an estimator of collusion attack
for optimal detector (MAP) using the imbalance of symbols in
a pirated codeword. According to the discrete bias probabilities
in the Nuida code, we classify the imbalances into groups.
The imbalances are calculated for possible collusion strategies
and number of colluders as the CSCV. At the estimation, the
distances between the imbalances observed from a pirated
codeword and CSCVs stored in a database are examined to
find the closest one. As a result of computer simulation, it
was confirmed that the total performance of proposed method
was better than any other conventional studies and was very
close to the MAP performance. One of our future work is to
consider the additive noise in a pirated codeword.

ACKNOWLEDGMENT

The research is supported by the open collaborative research
at National Institute of Informatics (NII) Japan (FY2018).

REFERENCES

[1] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,”
IEEE Trans. Inform. Theory, vol.44, pp.1897–1905, 1998.

[2] G. Tardos, “Optimal probabilistic fingerprint codes,” Proc. STOC 2003,
pp.116–225, 2003.

[3] K. Nuida, M. Hagiwara, H. Watanabe, and H. Imai, “Optimization of
Tardos’s fingerprinting codes in a viewpoint of memory amount,” Proc.
IH 2007, LNCS, vol.4567, pp.279–293, Springer, Heidelberg, 2008.

[4] K. Nuida, S. Fujitu, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa,
and H. Imai, “An improvement of discrete Tardos fingerprinting codes,”
Designs, Codes and Cryptography, vol.52, no.3, pp.339–362, 2009.

[5] M. Wu, W. Trappe, Z. J. Wang, and K. J. R. Liu,“ Collusion resistant
fingerprinting for multimedia,” IEEE Signal Processing Magazine, vol.
21, no. 2, pp. 1527, 2004.

[6] B. Škorić, S. Katzenbeisser, and M. Celik, “Symmetric Tardos fingerprint-
ing codes for arbitrary alphabet sizes,” Designs, Codes and Cryptography,
vol.46, no.2, pp.137–166. 2008.

[7] T. Furon and L.P. Freire “EM decording of Tardos traitor tracing codes,”
ACM Multimedia and Security, pp.99–106, 2009.

[8] P. Meerwald and T. Furon, “Towards practical joint decoding of binary
Tardos fingerprinting codes,” IEEE Trans. Inform. Forensics and Security,
vol.7, no.4, pp.1168–1180, 2012.

[9] M. Desoubeaux, C. Herzet, W. Puech, and G. L. Guelvouit, “Enhanced
blind decoding of Tardos codes with new MAP-based functions,” Proc.
MMSP, pp.283–288, 2013.

[10] J. J. Oosterwijk, B. Skorikc, and J. Doumen, “A capacity-achieving
simple decoder for bias-based traitor tracing schemes,” IEEE Trans.
Inform. Theory, vol.61, no.7, pp.3882–3900, 2015.

[11] T. Laarhoven, “Capacities and capacity-achieving decoders for various
fingerprinting games,” Proc. IH&MMSec2014, pp.123–134, 2014.

[12] T. Furon, L. P. Preire, A. Guyader, and F. Cérou, “Estimating the minimal
length of Tardos code,” Proc. IH 2009, LNCS, vol.5806, pp.176–190,
Springer, Heidelberg, 2009.

[13] M. Kuribayashi, and N. Funabiki “Universal scoring function based
on bias equalizer for bias-based fingerprinting codes,” IEICE Trans.
Fundamentals, vol.E101-A, no.1, pp.119–128, 2018.

[14] M. Kuribayashi, “Tardos’s fingerprinting code over AWGN channel,”
Prof. IH2010, LNCS, vol. 6387. Springer, Heidelberg, pp.103–117, 2010.

[15] A. Simone and B. Škorić, “Accusation probabilities in Tardos codes:
beyond the Gaussian approximation,” Designs, Codes and Cryptography,
vol.63, no.3, pp.379–412, 2012.

1555

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:57-0500
	Preflight Ticket Signature

