
Chatting Application Monitoring on Android
System and its Detection based on the Correlation

Test
Yafei Li ∗, Jiageng Chen∗ and Anthony TS Ho †
∗ Central China Normal University, Wuhan, China

E-mail: chinakako@gmail.com
† University of Surrey, Guildford, UK

E-mail: a.ho@surrey.ac.uk

Abstract—Mobile phones are playing an important roles in
our modern digital society, which have already replaced the tra-
ditional computer in many situations. Nevertheless, the number
of malicious software also starts to grow and showed significant
impact on our legal use. Among several mobile systems, the
Android platform is currently the most widely used and open
system, which also makes it a very attractive target for the
malicious applications. User privacy is of great interest to many
different agents, which becomes of the most valuable target
for the malware, and the chatting software naturally become
one of the richest information resource target. In this paper,
we first investigate the core techniques that are used by the
most monitoring softwares. Then we propose several correlation
experiments to efficiently detect the those softwares. We devel-
oped a monitoring prototype as well as the detecting system,
including the mobile phone side and the remote web server
side, to simulate the scenario in the real-world environment. The
experiment confirmed the efficiency of our approach.

Keywords—Spy Applications, Android System, malicious soft-
ware, Detection, Correlation Test.

I. INTRODUCTION

In recent years, with the development of technology and
the improvement of people’s living standard, smart phone
has become an important part of mass consumption and life.
The functionality of smart phones is also becoming more and
more powerful with the development of the technology, and
it has somehow replaced other functional devices, such as
the cameras, music players, and even as a productivity tool
to deal with the tasks of people’s life and work. Therefore,
these factors lead to the fact that smart phones store a lot
of user privacy data. Especially in recent years, with the
rapid development of mobile Internet and cloud computing
technology, users’ on-line chat, mobile office and payment
have become daily behaviors.

The Android operation system was introduced by Google
company in 2007. Because of its open source characteristics, it
soon became the most popular operation system in the market.
According to IDC statistics, as of the first quarter of 2017, the
Android market share has reached 85% in the global smart-
phone market. Such a high market share has attracted a large
number of application developers from all over the world to
develop various applications on their platform. But the Google

play lacks a strict and meticulous procedure for testing the
application market, and the mobile phone manufacturers pro-
vide their own mobile application stores, such as the Samsung
application store, the HUAWEI application market and so on,
which make the Android platform a breeding ground for the
spread of the virus. At the same time, in order to reflect the
difference of their products, mobile vendors have made a lot
of customization to the native Android system, which also
caused the fragmentation of the Android environment, and the
manufacturer’s defect repair and upgrading of the system is
also behind the official system of the Android.

User privacy becomes the main target of the malware, and
the chatting software due to the rich information it can gener-
ate, naturally become one of the most valuable target. The most
widely used chatting softwares include wechat, QQ, whatsapp,
line and so on [25], [26], [27], [28]. Most of the modern
chatting softwares take advantage of the modern cryptography
to achieve confidentiality, integrity and so on. Applications
like whatsapp can even achieve end-to-end security [29]. Thus
even end-to-end security is not available, one cannot easily
obtain the message content by just passively intercept the
wireless digital communication. As a result the attacker has to
make the spy activity happen before the data is encrypted. At
present, there are commercialized spy software in the market,
such as mSpy, Highster Mobile, FlexiSPY, iKeyMonitor, and
PhoneSheriff [1]. Usually the software will be installed on
the target devices after the users pay for the service. Users
can spy on the phone remotely through a web-based interface.
The monitoring targets include: SMS, call records, Internet
browsing records, chat records in social software, etc.

In this paper, we investigate the monitoring techniques on
the android platform and develop an efficient monitoring sys-
tem which can be used to capture chatting data from wechat,
QQ and line. Then we provide the test framework which can be
used to detect the spying behavior of the monitoring software.
We structured the paper as follows. Section II reviews related
literature. We designed a real-time chat record system, named
Chatspy, based on the Accessibility API in Section III, and
the experiment setup and findings are described in Section IV.
We conclude the paper in Section V.

1556

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018



II. RELATED WORK

N Peiravian and X Zhu [15] proposed to combine per-
mission and API calls and use machine learning methods
to detect malicious Android applications. Lker Burguera [6]
capitalized on earlier approaches for dynamic analysis of
application behavior for detecting malicious software. Asaf
Shabtai and Uri Kanonov [8] evaluated several combinations
of anomaly detection algorithms, and the results suggested that
the proposed framework was effective in detecting malicious
software on Android. AD Schmidt and R Bye [12] performed
a statical analysis on the executables to extract their function
calls in Android environment and they also presented a collab-
orative malicious software detection approach to extend these
results. T Isohara and K Takemori [13] proposed a kernel-base
behavior analysis for android malicious software inspection,
and the result showed that their system could effectively
detect malicious behaviors of the unknown applications. B
Amos and H Turner [17] presented a STREAM framework,
which was developed to enable rapid large-scale validation of
mobile malicious software machine learning classifiers. KO
Elish and X Shu [19] described a highly accurate classification
approach for detecting malicious Android applications with
better efficiency.

Due to the development of machine learning and deep
learning in recent years, more and more works are done
to identify malware based on the algorithms. In particular,
Bayesian classifier plays a very important role in identifying
these malware[11][18]. Yousra Aafer and Wenliang Du [10]
have conducted a thorough analysis to extract relevant features
to malicious software behavior and their results showed that
they were able to achieve a high accuracy using kNN classifier.
J Sahs and L Khan [14] presented a machine learning-based
system which extracted a number of features and trained a
One-Class Support Vector Machine in an offline manner for
detecting malicious software on Android. H Gascon and F
Yamaguchi [16] proposed a method for malicious software
detection based on efficient embedding of function call graphs
with an explicit feature map inspired by a linear-time graph
kernel.

This work instead focuses especially on the spy softwares
which only target the popular chatting softwares such as QQ,
wechat, whatsapp and line. Our detection methodology thus
specifically works for such kind of malicious softwares.

III. REAL-TIME OBTAIN CHAT RECORD SYSTEM
BASED ON ANDROID ACCESSIBILITY

Considering that some people have difficulty in operating
the android system, or obtaining the information from the
system due to the visual, physical, or age constraints, Android
provides accessibility features and serves to help users better
use Android devices. Accessibility is generally referred to as
barrier free or disabled in China. The official summary of
Accessibility can be found in [21]. We will mainly use this
functionality to build our monitoring application.

A. Technical principle

Accessibility related services and interfaces had been added
for completing the auxiliary function in the Android 1.6
period, with AccessibilityService component as the entry,
combined with key classes such as AccessibilityEvent, Ac-
cessibilityNodeInfo. AccessibilityService is an abstract class
that inherits Service, and which is a system component, so it
is different from the general Service, The use-method is as
follows:
• Add permission: android.permission.BIND ACCESSIBI-

LITY SERVICE.
• Add action:android.accessibilityservice.AccessibilitySer-

vice.
• Provide a meta-data named android.accessibilityservice

and provide XML as a configuration file for Accessi-
bilityService, and the configuration file declares that the
service receive event type, feedback type, and so on.

B. Real-time access chat record system ChatSpy

Based on the Accessibility API (Application Programming
Interface), we firstly designed our spy application prototype
ChatSpy which includes two sides, the mobile phone side and
the remote web server side. It is able to directly obtain the
real-time chat records in social applications without rooting
the phone. After capturing the message, it then send the chat
records to a designated remote Web server, which runs the
receiving services in the background, so it is transparent-
totheuser.

1) Development environment: We show our development
environment as follows:

a) Mobile phone side: The development environment of
the mobile phone side is shown in Table I.

TABLE I: Development environment of Mobile phone side

Development Tool Android Version Development Language

Android Studio 2.3.3 4.4.2 Java8

b) Remote Web server side: The development environ-
ment of the remote Web Server is shown in Table II.

2) System running process: After the system is initiated, the
mobile phone (client) side is sending or receiving messages
from the remote Web server side. The overall process is shown
in Figure 1.

Fig. 1: System overall flow chart

After the mobile phone side application starts running,
the Accessibility function is activated, which will receive
the Accessibility event. Through the comprehensive pro-
cessing of the package names (such as com.tencent.mm,

1557

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



TABLE II: Development environment of Remote Web server
side

Type Description

Development Tool Eclipse 4.6.2

Web Server Tomcat 7

Development Language Java 8

Database MySQL 5.7.17

Dependency software package

Maven 4.0.0, Spring 4.3.8
SpringMVC 4.3.8, Mybatis 3.2.8
druid 1.0.31, slf4j-log4j12 1.6.4

tomcat7-maven-plugin 2.2, jsp-api 2.0
servlet-api 2.5, jstl 1.2

commons-net 3.3, commons-io 1.3.2
commons-lang3 3.3.2, junit 4.12

mysql-connector-java 5.1.32

com.tencent.mobileqq, com.whatsapp, jp.naver.line.android,
etc.), text information, types of the events, and the acquisition
of the real-time chat content will be realized. The flow chart
is shown in Figure 2. After the remote Web server module is
started, it monitors and receives the Http requests sent by the
mobile phone, extracts the chat content from the http package,
and persists the data to the database. The flow chart is shown
in Figure 3.

3) System architecture: In terms of the system architecture,
our ChatSpy is divided into two sides: Mobile phone client
side and remote Web server side. The two parts work together
to complete the real-time acquisition, transmission, data pro-
cessing and storage of social applications’ chat content.

a) Mobile phone side: The mobile phone side is made
up of three parts: configuration files, Activity and function
module. The detailed architecture is shown in Figure 4. The
description of each functional modules and files in the project
is shown in Table III.

Due to the different structure of each chat applica-
tion, in terms of the monitoring events, we need to
use different API to obtain the corresponding informa-
tion. For example, to monitor the corresponding event we
use TYPE WINDOW CONTENT CHANGED for QQ and
TYPE VIEW SCROLLED for Wechat, Whatsapp and Line.
Table IV summarizes all the details we need for monitoring
the different applications.

b) Remote Web server side: The remote Web server side
uses the common Java Web programming, introduces the SSM
framework (Spring, SpringMVC, Mybatis), and handles the
chat content data obtained by listening to the http request from
the client side, and stores the data by the data persistence
layer. The architecture diagram is shown in Figure 5. The Web
Server side mainly consists of three modules: Functional logic,
Configuration and Database, as shown in Table V.

For example, one user receives a WeChat message ”Hello,
Bob” from Alice at 8:54 am, October 1st, 2018. ChatSpy will
instantaneously obtain this message and send a http request:
http://ip/add/201810010854/WeChat: Alice send a message:
Hello, Bob. The remote web server will receive the request

and parse the user name and the chat content, then store the
message into the server side database.

4) System operation and test:
a) System running environment: We run our client side

application on Huawei Mate 7 with Android 4.4.2 operation
system, and installed four chatting softwares: Wechat, QQ,
Whatsapp and Line. We use OSX system on the server side.
Please refer to Table VI and VII for the detailed parameters.

b) System Test: ChatSpy does not have an user interface,
which shares the similarity with a malware which usually runs
in the background. Moreover, after starting the ChatSpy, we
run the malware detection system which is the default applica-
tion shipped with Huawei Mate 7, and to our surprise we pass
the detection without any warning information. During the
chatting procedure, we use the Accessibility API to catch the
content of the screen and extract the corresponding messages
we are interested in and send back to the remote server.

By testing our monitor prototype, we found that the Chatspy,
designed by using Accessibility API, can obtain the user
chatting records (wechat, QQ, whatsapp, line) in real time
without rooting the device. In the next Section, we will focus
on how to design an efficient strategy to detect the spy
application which mainly target the chatting applications.

IV. EXPERIMENTAL PROCESS AND RESULTS
ANALYSIS

Take the behavior of the spy application into consideration,
it is reasonable to assume that there is a correlation between
the activity of the chatting application and the spy application.
Especially, the captured data needs to be sent to the remote
backend server, which will trigger the network communication.

To obtain the test data, we design a module named Get-
NewWorkData that can get the instantaneous traffic of the
running process. The application runs in the form of service in
the background, monitors the instantaneous flow of the whole
mobile system in real-time, and stores it in a txt file to facilitate
data analysis in the future.

A. Data acquisition

ChatSpy detects that when the user receives or sends a chat
record, it instantly encapsulates the chat record into packets
and sends it to the remote server. Meanwhile, there exists many
other running processes in the system such as the web browser
and so on. From the detector’s point of view, we need to take
all these processes into consideration when perform the data
analysis. For example, at 194s chatspy send and receive in total
290 bytes packet. Table VIII provides an example of several
running processes. The other running processes remain in a
rather inactive phase so we omit them here.

B. Data analysis

In order to test whether the current mobile environment
has a malicious process running, we can analyze the network
traffic values between two or more processes and the time
interval generated by network traffic to determine whether
these processes have a certain correlation. If a process has

1558

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 2: Running process of the client side

TABLE III: Subset of the most relevant modules and files in Mobile phone side project

Module File Description

Configuration file
AndroidMainfest.xml An entry file for the Android application,which describes the exposed components in package

(activities, services, and so on) can be processed.

ChatLogServiceConfig.xml The main file to enable Accessibility services.It describes the types of events that need to be
monitored, and the software packages that need to be monitored.

Activity MainActivity.java
The core class of Android (android.app.Activity). In the Activity class, there is a onCreate event
method, which is generally used to initialize the Activity, and the View is placed on the Activity via
the setContentView method. After binding, the Activity displays the controls on the View.

Functional modules

ChatLogService.java Get the chat record service
QQChatLog.java Get the QQ chat record
WeChatLog.java Get the WeChat chat record

WhatsappChatLog.java Get the Whatapp chat record
LineChatLog.java Get the Line chat record

WebUtil.java Process chat record

TABLE IV: Different processing methods for each Applications

Social Application Monitoring Event How to get chat record How to parse Username

QQ TYPE WINDOW CONTENT CHANGED Judge the types of child nodes
of chat nodes By Control ID, we get the node

set corresponding to the control,
locate the last node, and resolve

the name / nickname.
WeChat

TYPE VIEW SCROLLED By Controll ID
Whatsapp

Line

Fig. 3: Remote Web Server side running process

a significant correlation with the process of the social appli-
cations, it can be explained to a certain extent that the process
is stealing chat records from the social applications.

1) Correlation analysis: Correlation analysis refers to the
analysis of two or more correlated variables, so as to measure
the relative degree of two variables. If the correlation between
elements is related to some degree, the probability can be
used to measure the evidence. he scope and areas of relevance
cover almost all the aspects we have seen, and the definition
of relevance varies greatly in different disciplines.

The common methods of correlation analysis include chart
correlation analysis (line chart and scatter plot), covariance
and covariance matrix, correlation coefficient, one element re-
gression, multiple regression, information entropy and mutual
information. We focus on the chart correlation analysis and
the correlation coefficient in this paper.

1559

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 4: Mobile phone side architecture

TABLE V: Subset of the most relevant modules and files in Web Server side project

Module File Description

Functional logic

MsgController.java Located in the Controller layer, which is mainly responsible for receiving the request sent by the
mobile terminal application, and then sending it to the service layer for processing.

MsgService.java Located on the Service level, and which is the interface to invoke the main business logic.

MsgServiceImpl.java Located on the Service level, which is the specific implementation of calling the interface of main
business logic.

MsgMapper.java Located in the Persistence layer, and the main function is to map the entities in the chat record and
the table fields in the database.

Msg.java Located in the Persistence layer, which is a chat record entity class.

Configuration

SqlMapConfig.xml Configure the plug-in for mybatis.

ApplicationContext-dao.xml
The management of the database by spring mainly includes configuring the database connection
pool, loading the database configuration file, configuring SqlsessionFactory, configuring the scanning
package, and loading the mapper proxy objects.

ApplicationContext-service.xml Spring configures the scan package and load the Service implementation class.

ApplicationContext-trans.xml Spring manages transactions, mainly including configuration transaction manager, transaction notifi-
cation, and transaction section.

Springmvc.xml Configure the springmvc context, open the MVC annotation driver and configure the view resolver.

Db.properties Database configuration file.

Log4j.properties The log management configuration file.

Web.xml the configuration files of the whole Web project mainly include loading spring container, configuring
filter to solve post garbled code, loading springmvc front-end controller, etc.

Pom.xml Maven configuration file.

Database Messages id varchar, which is used to store time nodes and the format is yyyyMMddHHmmssSSS.
msg Longtext, which is used to store user chat text records.

TABLE VI: Running environment of Mobile phone side

Mobile phone Operating System Applications

HUAWEI Mate 7 Android 4.4.2

WeChat 6.5.4
QQ 7.2.0

Whatsapp 2.17.350
Line 7.3.0

TABLE VII: Running environment of Web Server side

Operating System WebServer Database

macOS High Sierra 10.13.3 Tomcat 7 MySQL 5.7.17

2) Correlation coefficient: The correlation coefficient is
the first statistical index designed by the statistician Karl
Pearson. It is the amount of the linear correlation between the

TABLE VIII: The network traffic of demonstrated processes

time(s) ChatSpy Browser Google search Chrome Wechat QQ

... ... ... ... ... ... ...
190 0 2921 1471 0 0 0
191 0 5816 0 0 0 0
192 0 7531 0 0 0 0
193 0 464 5596 0 0 0
194 290 60153 4456 0 0 595
195 290 73438 0 0 0 52
196 290 80941 0 0 0 3705
197 0 37657 1455 0 0 0
198 0 57610 0 0 0 0
199 0 34285 1507 0 0 0
200 0 78065 0 0 0 0
... ... ... ... ... ... ...

1560

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 5: Web Server side architecture

variables, which is generally expressed in the letter ρ. Because
of different subjects, there are many ways to define correla-
tion coefficients. In general, the formula for the correlation
coefficient is [21]:

ρ =
Cov(X,Y )

σXσY

That is, the covariance of X and Y is divided by the standard
deviation of X and the standard deviation of Y.

Therefore, the correlation coefficient can also be considered
as a covariance. It is a special covariance that eliminates two
dimensional variables and normalization. So, the correlation
coefficient can reflect whether the two variables change in
the same direction or in reverse direction. The correlation
coefficient is positive if correlated in the same direction, or
negative if in the reverse direction. It eliminates the influence
of the variation of two variables, but simply reflects the
similarity of two variables per unit change. The closer the
correlation coefficient is to 1 or -1, the stronger the correlation
is. The closer the correlation coefficient is to 0, the weaker the
correlation is.

According to this experiment, we consider two kinds of

correlation coefficient testing methods: spearman’s rank corre-
lation coefficient test and kendall’s rank correlation coefficient
test.

a) Spearman’s rank correlation coefficient test: In statis-
tics, Spearman’s rank correlation coefficient, named after
Charles Spearman and often denoted by the Greek letter ρ. It
is a nonparametric index that measures the dependence of two
variables. It uses monotone equation to evaluate the correlation
of two statistical variables. If there is no duplicate value in the
data, and when the two variables are completely monotonically
correlated, the Spearman’s correlation coefficient is +1 or 1.
The Spearman’s rank correlation coefficient is defined as the
Pearson correlation coefficient between the ranked variables
[23].

For a sample of size n, the n raw scores Xi,Yi are converted
to ranks rgXi, rgY i, and rs is computed from:

rs = ρrgX ,rgY
=
cov(rgX , rgY )

σrgX
σrgY

where
• ρ denotes the usual Pearson correlation coefficient, but

applied to the rank variables.
• cov(rgX ,rgY ) is the covariance of the rank variables.
• σrgX and σrgY are the standard deviations of the rank

variables.
b) Kendall’s rank correlation coefficient test: In statis-

tics, the Kendall rank correlation coefficient, commonly re-
ferred to as Kendall’s tau coefficient (after the Greek letter τ ),
is a statistic used to measure the ordinal association between
two measured quantities. A tau test is a non-parametric hypoth-
esis test for statistical dependence based on the tau coefficient.

Let (x1, y1), (x2, y2), . . ., (xn, yn) be a set of observations
of the joint random variables X and Y respectively, such
that all the values of (xi) and (yi) are unique. Any pair of
observations(xi, yi) and (xj , yj), where i 6= j, are said to be
concordant if the ranks for both elements (more precisely, the
sort order by x and by y) agree: that is, if both xi > xj and
yi > yj ; or if both xi < xj and yi < yj .They are said to be
discordant, if xi > xj and yi < yj ; or if xi < xj and yi >
yj . If xi = xj or yi = yj , the pair is neither concordant nor
discordant. The Kendall τ coefficient is defined as [24]:

τ =
(number of concordant pairs)− (number of discordant pairs)

n(n− 1)/2

The denominator is the total number of pair combinations, so
the coefficient must be in the range -1 6 τ 61.
where
• If the agreement between the two rankings is perfect (i.e.,

the two rankings are the same) the coefficient has value
1.

• If the disagreement between the two rankings is perfect
(i.e., one ranking is the reverse of the other) the coeffi-
cient has value -1.

• If X and Y are independent,then we would expect the
coefficient to be approximately zero.

1561

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



• An explicit expression for Kendall’s rank coefficient is

τ =
1

n(n− 1)

∑
i 6=j

sgn(xi − xj) sgn(yi − yj)

3) Data analysis: Firstly the 385 sample data are extracted
from the data set we capatured, each sample data contains
the instantaneous network traffic of 6 processes, which are
Chatspy, Browser, Google quick searchbox, Chrome, Wechat,
Mobile QQ. The corresponding process IDs are 10113, 10004,
10023, 10033, 10098 and 10101 as shown in Table IX. Let’s
suppose that Pid 10113 is an unknown process to the detection
program.

TABLE IX: Process Identify Number

PID Process Name

10113 Chatspy
10004 Browser
10023 Google quick searchbox
10033 Chrome
10098 WeChat
10101 Mobile QQ

In our experiment, we treat other applications besides pid
10113 to be the known processes for users, such as chrome,
QQ, WeChat and so on. The target is to test whether pid 10113
is a spy process which may monitor other applications’ private
records. Since we do not the exact target application, we need
to take all the active running processes into consideration. In
our experiment, we take the 5 most active processes for the
data analysis phase. We take one process and try to test the
correlation against all the other processes in a combinatorial
way. For example, we pick the spy application pid 10113
for the one random variable. The other one should be the
combination of all the rest processes. Since we have only 6
processes, the rest contains 5, and we need to divide into 5
cases which are C1

5 , C
2
5 , C

3
5 , C

4
5 , C

5
5 . Table X-XIV show the

correlation test result in each of the case. Notice that for the
demonstration purpose, we picked the spy application for one
side of the correlation test, but in reality we may not sure
which one it is. So we need to perform the experiment we
have shown here 6 more times.

TABLE X: Correlation coefficient Test 1

unknown pid pid Spearmanr Kendalltau

10113

10004 -0.0956 -0.0885
10023 -0.0734 -0.0704
10033 -0.0865 -0.0828
10098 0.5785 0.5530
10101 0.6775 0.6518

Since in our setting, the spy application is set to capture
the message of both wechat and qq, the correlation will
reach the strongest point when test against the combination
of two, namely, the pid 10098 and 10101, which are the
pid of wechat and qq accordingly. According to the last row
of the Correlation coefficient Test 2 Table, we can see that

TABLE XI: Correlation coefficient Test 2

unknown pid pid Spearmanr Kendalltau

10113

10004-10023 -0.1193 -0.1098
10004-10033 -0.1131 -0.1031
10004-10098 0.2273 0.2065
10004-10101 0.2526 0.2305
10023-10033 -0.1189 -0.1110
10023-10098 0.3226 0.3013
10023-10101 0.4052 0.3810
10033-10098 0.3382 0.3164
10033-10101 0.4319 0.4062
10098-10101 0.9357 0.8794

1 *-* is a combined process code that combines the instantaneous
traffic flow value generated by 2 different processes.

TABLE XII: Correlation coefficient Test 3

unknown pid pid Spearmanr Kendalltau

10113

10004-10023-10033 -0.1356 -0.1227
10004-10023-10098 0.1829 0.1648
10004-10023-10101 0.2080 0.1885
10004-10033-10098 0.1728 0.1542
10004-10033-10101 0.1825 0.16415
10004-10098-10101 0.5290 0.47215
10023-10033-10098 0.2054 0.1870
10023-10033-10101 0.2697 0.2479
10023-10098-10101 0.6752 0.6202
10033-10098-10101 0.7133 0.6552

1 *-*-* is a combined process code that combines the instantaneous traffic
flow value generated by 3 different processes.

TABLE XIII: Correlation coefficient Test 4

unknown pid pid Spearmanr Kendalltau

10113

10004-10023-10033-10098 0.1324 0.1172
10004-10023-10033-10101 0.1430 0.1279
10004-10023-10098-10101 0.4716 0.4180
10004-10033-10098-10101 0.4373 0.3846
10023-10033-10098-10101 0.5272 0.4732

1 *-*-*-* is a combined process code that combines the instantaneous traffic flow
value generated by 4 different processes.

TABLE XIV: Correlation coefficient Test 5

unknown pid pid Spearmanr Kendalltau

10113 10004-10023-10033-10098-10101 0.3852 0.3365
1 *-*-*-*-* is a combined process code that combines the instantaneous traffic flow value

generated by 5 different processes.

the result of Spearmanr and Kendalltau reaches 0.9357 and
0.8794, which show very strong correlation, and also they are
the highest values among all the tests here. This provides
us with a very strong evidence that the process with PID
10113 has a strong correlation with the application of wechat
and qq regarding the network traffic flow. The other system
and application running processes are selected according to
the activation ranking, since we make the assumption that
sending back the data to the remote server will take network
bandwidth. However, we need to point out that if the social
network application is not active, then we may not be able
to make an accurate detection. A second limitation of our
current detection strategy is that we only consider that the real-

1562

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



time capturing and sending. The adversary could use different
strategies such as caching the content and randomizing the
sending time, which can help keep under the radar. We will
target more sophisticated adversaries in our future works.

V. CONCLUSION AND DISCUSSION

Malware has become a serious threat on the android plat-
form. Monitoring applications which are in the gray zone,
could be used for various purposes, including the spy behavior
which can leak the user’s privacy. In this paper, we studied the
technical principle of such monitoring application, especially
we focus on the behavior of the monitoring softwares that
spy the chatting softwares such as wechat, qq, whatsapp and
line. We made our spy prototype by using the Accessibility
API provided by Android. Then we investigate the strategies
on how to efficiently detect the spy applications based on the
statistical behavior. By taking advantage of the correlation test,
we are able to accurately distinguish the chatting application
spy processes among the others. As one of our future works,
we will investigate how to defeat the spy application in a
more sophisticated manner where the attacker can choose other
sending strategies.

ACKNOWLEDGMENT

This work has been partly supported by the National Natural
Science Foundation of China under Grant No. 61702212 and
the research funds of CCNU from colleges basic research and
operation of MOE under Grand No. CCNU16A05040.

REFERENCES

[1] The entire list of mobile spysoftware applications. https://www.
top10spysoftware.com/apps, 2018. Accessed April 17, 2018.

[2] Nicolas Christin Timothy Vidas, Daniel Votipka. All your droid are belong
to us: A survey of current android attacks. WOOT, 2011.

[3] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj
Singh Gaur, and Mauro Conti. Android security: A survey of issues,
malware penetration, and defenses. IEEE COMMUNICATION SURVEYS
& TUTORIALS, 17(2), SECOND QUARTER 2015.

[4] Bahman Rashidi and Carol Fung. A survey of android security threats
and defenses. 6:335, 10 2015.

[5] Sascha Fahl, Marian Harbach, Thomas Muders, Bernd Freisleben, and
Matthew Smith. Why eve and mallory love android: an analysis of android
ssl (in)security. In ACM Conference on Computer and Communications
Security, pages 5061, 2012.

[6] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid:
Behavior-Based Malware Detection System for Android. 2011.

[7] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. Riskranker:scalable and accurate zero-day android malware detec-
tion. In International Conference on Mobile Systems, Applications, and
Services, pages 281294, 2012.

[8] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael
Weiss. andromaly: a behavioral malware detection framework for android
devices. Journal of Intelligent Information Systems, 38(1):161190, 2012.

[9] Dong Jie Wu, Ching Hao Mao, Hahn Ming Lee, and Kuo Ping Wu.
Droidmat: Android malware detection through manifest and api calls
tracing. In Information Security, pages 6269, 2012.

[10] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in Android. Springer
International Publishing, 2013.

[11] Suleiman Y. Yerima, Sakir Sezer, Gavin Mcwilliams, and Igor Muttik. A
new android malware detection approach using bayesian classification. In
IEEE International Conference on Advanced Information NETWORKING
and Applications, pages 121 128, 2013.

[12] A. D Schmidt, R Bye, H. G Schmidt, and J Clausen. Static analysis
of executables for collaborative malware detection on android. In IEEE
International Conference on Communications, pages 15, 2009.

[13] Takamasa Isohara, Keisuke Takemori, and Ayumu Kubota. Kernel-based
behavior analysis for android malware detection. In Seventh International
Conference on Computational Intelligence and Security, pages 10111015,
2012.

[14] Justin Sahs and Latifur Khan. A machine learning approach to android
malware detection. In Intelligence and Security Informatics Conference,
pages 141147, 2012.

[15] Naser Peiravian and Xingquan Zhu. Machine learning for android
malware detection using permission and api calls. In IEEE International
Conference on TOOLS with Artificial Intelligence, pages 300305, 2014.

[16] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck.
Structural detection of android malware using embedded call graphs. In
Proceedings of the 2013 ACM workshop on Artificial intelligence and
security, pages 4554, 2013.

[17] Brandon Amos, Hamilton Turner, and Jules White. Applying machine
learning classi- fiers to dynamic android malware detection at scale.
In Wireless Communications and Mobile Computing Conference, pages
16661671, 2013.

[18] S. Y Yerima, S Sezer, and G Mcwilliams. Analysis of bayesian
classification-based approaches for android malware detection. Informa-
tion Security Iet, 8(1):2536, 2016.

[19] Karim O. Elish, Xiaokui Shu, Danfeng Yao, Barbara G. Ryder, and
Xuxian Jiang. Profiling user-trigger dependence for android malware
detection. Computers & Security, 49:255273, 2015.

[20] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and
Yang Liu. A multi-view context-aware approach to android malware de-
tection and malicious code localization.Empirical Software Engineering,
(6):153, 2017.

[21] Accessibility. http://www.android-doc.com/guide/topics/ui/accessibility/
index.html, 2018. Accessed April 17, 2018.

[22] ZHOU Gairong, WANG Zhifu, WANG Yongxue, and WANG Jian.
Probability and Statistics. Beijing: Higher Education Press, 2009.

[23] Jerome L Myers and Arnold D Well. Research design and statistical
analysis (2nd ed.). L. Erlbaum Associates, 2010.

[24] R.B. Nelsen. Kendall tau metric. In Encyclopedia of Mathematics.
Springer Science+Business Media B.V. / Kluwer Academic Publishers,
2001.

[25] WeChat. Tencent Technology (Shenzhen) Company Ltd. https://play.
google.com/store/apps/details?id=com.tencent.mm, 2018. Accessed April
17, 2018.

[26] QQ. Tencent Technology (Shenzhen) Company Ltd. https://play.google.
com/store/apps/details?id=com.tencent.mobileqq, 2018. Accessed April
17, 2018.

[27] WhatsApp Messenger. WhatsApp Inc. https://play.google.com/store/
apps/details?id=com.whatsapp, 2018. Accessed April 17, 2018.

[28] LINE: Free Calls & Messages. LINE Corporation. https://play.google.
com/store/apps/details?id=jp.naver.line.android&hl=en, 2018. Accessed
April 17, 2018.

[29] Gupta, Vipul, et al. ”Sizzle: A standards-based end-to-end security
architecture for the embedded internet.” Pervasive and Mobile Computing
1.4 (2005): 425-445.

1563

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:57-0500
	Preflight Ticket Signature




