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Abstract—Digital image forensics is a young but maturing field,
encompassing key areas such as camera identification, detection
of forged images, and steganalysis. However, large gaps exist
between academic results and applications used by practicing
forensic analysts. To move academic discoveries closer to real-
world implementations, it is important to use data that represent
“in the wild” scenarios. For detection of stego images created
from steganography apps, images generated from those apps are
ideal to use. In this paper, we present our work to perform steg
detection on images from mobile apps using two different ap-
proaches: “signature” detection, and machine learning methods.
A principal challenge of the ML task is to create a great many of
stego images from different apps with certain embedding rates.
One of our main contributions is a procedure for generating a
large image database by using Android emulators and reverse
engineering techniques, the first time ever done. We develop
algorithms and tools for signature detection on stego apps,
and provide solutions to issues encountered when creating ML
classifiers.

I. INTRODUCTION

Digital image forensics is a term used in academia to
describe the study of digital images for camera identification,
image forgery, and steganalysis. With the popularity of mobile
devices, camera identification and forgery detection are attract-
ing research for more practical scenarios for digital image
forensics. Important challenges remain, however, to detect
steganography “in the wild”, such as produced by mobile apps,
and where academic research may provide impetus for tool
development. In the penultimate case, evidence produced by
a digital image forensic analysis for use in a court of law
will be held to the Daubert standard [18], and assessed for
scientifically-based reasoning and appropriate application to
the facts.

Academic steganography and steganalysis techniques are
very successful in the academic environment using sophis-
ticated embedding and detection methods and data typically
collected from digital still cameras [20, 7, 17, 8, 11, 12].
While mobile phones appear as part of criminal investigations
on a regular basis, surprisingly, the authors found only one
published research on steganography detection where a mobile
phone app was used to produce the stego images [5]. This
paper presents our results of the first in-depth investigation
into detection of stego images produced by a number of apps
on mobile phones.

In the academic community, a machine learning classifier
is the first choice for steganalysis, and the algorithms are

usually tested on a large database containing sufficient cover-
stego pairs of images. However, as discussed in Section III,
we show it is far from trivial to create appropriate training and
testing data from mobile stego apps to use in machine learning
(ML) classifiers. Moreover, unlike a published steganography
algorithm, Android developers prefer using more sophisticated
techniques, including a password for encryption or a secret
preprocessing package, or coding techniques such as obfusca-
tion. The third challenge is the variety of devices and input
images for the apps, and ignoring the impact of the image
source can cause unacceptable errors in detection of stego
images.

As Albert Einstein once said, in the middle of difficulty
lies opportunity. For data collection, we develop an Android
camera app [4] that allows us to gather thousands of images by
one device in just several hours. By using the most advanced
tools from program analysis [14, 2, 21], we make great efforts
to reverse-engineer many Android stego apps. In analyzing
the code written by developers of stego app programs, we
determine that, with few exceptions, most algorithms used
to hide the message are far from the advanced algorithms
published in academic research papers. For example, some
of the app embedding algorithms were based on simple least
significant bit (LSB) changes placed in an lexicographical
order in the image. Some apps provide little security, even
if a complicated embedding method was used, but strangely
had a unique “signature” embedded, and make the stego image
and its app easily identifiable as such. These are opportunities
to take advantage of, and make steg detection easier.

Focusing on three phone models and six Android stego
apps, we present answers to our fundamental question using
signature-based detection and machine learning classifiers.
While admittedly these initial experiments are limited in scope,
the experiments are soundly designed and provide the first
such deep study published using images from mobile phone
apps. We note that there is a large potential for security risks
if these apps continue to be used, but lack effective detection.
Table II shows 6 apps from the Google Play store, with a
minimum of 1000 to 100,000 downloads each, as of May
2018. Along with iPhone stego apps, as well as apps not
posted including the recently identified “MuslimCrypt” [16],
there is evidence that steganography continues to be a model
of digital communication. Understanding how to detect stego
images from stego apps has potential to help accurately assess
the rate that stego images occur “in the wild.”
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The remaining sections of the paper are as follows. In Sec-
tion II, we discuss the background of steganography, how it is
manifested in mobile apps, the general workflow of stego apps,
and the critical challenges in creating thousands of images
from mobile apps to use in steganalysis. Section III describes
the important process of creating the image dataset for all
our experiments, including the non-trivial reverse-engineering
procedure to generate the cover images corresponding to the
app-generated stego images. In Section IV, we present the
results of the signature-based detection of stego images from
mobile apps, followed by results of the machine learning
methods in Section V. Finally, in Section VI, we summarize
our work and look ahead to future challenges.

II. BACKGROUND

A. Steganography

Steganography offers techniques to send a payload without
revealing its presence in the medium of communication. The
focus of this paper is on digital images as the choice of
medium for steganography. Unlike encryption of information,
digital image steganography takes a payload, converts it to
bits, and changes the bits of an image ever so slightly, so the
changed image bits match the payload bits. This process is
typically done in a way to avoid visual distortions of the image.
In academic steganography, cover image is the term for an
image in its form just prior to embedding by a stego algorithm,
and the term stego image refers to an image output with hidden
content. We call a message the bit string corresponding to
the user-input content desired to be communicated. It does
not include passwords or other information generated by the
app code, such as length of the payload or bit locations, for
example. The term embed is used to describe the algorithmic
process of changing a cover image’s bit values to represent
the message bits. Typically, the change in bit values by the
embedding algorithm results in change in color (or gray)
intensity values by at most one. This leaves the overall visual
content looking “normal” to human vision. We use the term
payload to describe the combination of message, password,
string length indicators and all other bit values that the app
eventually embeds into the digital image. The payload size is
the number of bits needed to represent the payload.

Many steganography algorithms exist to hide a payload in
an image. One of the most common steganography algorithms
uses the least significant bit values for embedding, and is
adopted by many stego apps. Figure 1 provides an example of
one simple LSB-replacement embedding for a grayscale image
in the spatial domain, in which all the changes are highlighted
by bold numbers. In the stego images, the LSB values of the
cover images are replaced by the payload bits.

To make the payload more secure when embedding, a
developer can follow additional steps. First, the payload bits
themselves can be encrypted with a user-input, so that even
if they are retrieved, the key is necessary for decrypting the
payload. Second, the pixel locations where the payload bits
are embedded can be selected in a random order, again using
a key. As we will show in the following subsections, some

83    70    83    107  127  84

111  69    69    97    101  147

106  69    93    138  170  181

45    70    90    96    98    71

68    78    86    95    150  116

82    116  200  209  149  201

82    70    83    106  127  84

111  68    69    97    101  147

106  69    92    138  170  181

45    70    90    97    98    71

69    78    86    95    151  116

82    116  200  209  149  200

 1       0       1       1       1      0     

 1       1       1       1       1      1   

 0       1       1       0       0      1   

 1       0       0       0       0      1   

 0       0       0       1       0      0      

 0       0       0       1       1      1    

Cover image values

LSB values of Cover image

Stego image values

Payload or message bits

 0       0       1       0       1      0     

 1       0       1       1       1      1   

 0       1       0       0       0      1   

 1       0       0       1       0      1   

 1       0       0       1       1      0      

 0       0       0       1       1      0    

Fig. 1. An example of LSB embedding in the spatial domain.

stego apps use variations of the above methods to improve
their level of security.

B. General Workflow of the Embedding Process in Stego Apps

Although different stego apps may use different algorithms
to create the stego images, they have many common features in
their user interfaces. The user-input for stego apps include: (1)
the input image, and (2) the message or file to be embedded,
and optionally (3) the password. The output stego image is
usually in PNG or JPEG format, depending on the image
domain in which the payload is embedded. Figure 2 shows
the general workflow of an embedding process in a stego app.
Overall, an embedding process involves the following steps:

1) Decode domain values of input image;
2) Pre-process the domain values;
3) Pre-process the message;
4) Create and embed payload, and output stego image.
First, the user-input image is decoded into a bitmap of

pixel values, and transformed into domain values. For spatial
domain embedding, each domain value represents the RGB
color and Alpha value of each pixel. For frequency domain
embedding, the domain values represent the quantized DCT
coefficients in the JPEG file. Additionally, the app may resize
the cover image for different purposes such as reducing com-
putational complexity, or increasing the cover image capacity.

Stego programs pre-process the message differently, such as
encrypting the message before embedding to enhance security.
Some stego programs attach signature strings or message
length information so that the embedded message can be
faithfully extracted by the receiver. A signature-based steg de-
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Fig. 2. General Workflow of an Embedding Process.
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tection approach relies largely on the existence of the signature
strings and length information. We provide more details on the
signature-based detection approach in Section IV.

C. Steganalysis for Stego Images from Android Apps

Steganalysis has two main steps: first, to discover if hidden
payload is contained within the image, and, if so, extract and
decrypt the hidden message. The vast majority of papers in
the academic community has so far focused on classifying
an image as cover (innocent) or stego (with hidden con-
tent). Machine learning (ML) has proved to be a successful
method in classifying cover-stego pairs in academic settings.
A typical ML framework for steganalysis includes a labeled
image database, a corresponding feature space to represent the
images, and a classification algorithm to separate the stego
images from the clean images. The performance of a ML
algorithm can be evaluated by the average misclassification
rate for targeted images with a certain embedding rate, where
the embedding rate is defined as:

# of bits to represent the payload
# of the bits available to hide the payload (capacity)

One of the most popular image datasets in the academic
community is BOSSbase [3], in which there are more than
10,000 cover images from seven digital still cameras. Using
this dataset, steganalysts develop new algorithms to create
stego images in a more secure way by sending the cover-
stego pairs they create through advanced stego detectors. Most
studies limit their cases to the balanced database scenario, in
which the number of stego images is equal to the number of
cover images, since under the assumption of balanced data, the
average error rate of classification is sufficient to represent the
performance of a steganalyzer. That is, if we let PMD denote
the percentage of misdetections and PFA the percentage of
false alarms, then for a dataset constituting 50% cover images
and 50% stego images, the average error rate PE for the
detection is defined as:

PE =
1

2
(PMD + PFA). (1)

However, the scenario for detecting stego images created
by mobile apps is different. First, unlike academic embedding
algorithms or scripts which are capable of controlling the
embedding rate by directly generating bit streams as payloads,
a stego app encrypts real text together with a password (when
available) into a bit stream as a payload for the target image.
This means it is not trivial to generate a large amount of stego
images at a specific embedding rate. Second, as we can see
from Fig. 2, an input image provided by the user is processed
before the embedding step in many of the stego apps, and
therefore an input image is not necessarily the cover image in
the traditional definition. Different stego apps apply different
tools to process the input images into different image objects.
In this paper, we view an image after the pre-processing
procedure without any payload embedded as the cover image.
In this way, a cover image is a clean image produced by

the same processing libraries applied to its stego pair, and
the cover-stego pairs will have the same visual property that
human eyes cannot tell the difference. Extracting a cover
image as an intermediate output from a stego app is another
challenge, and the details of creating cover images by reverse
engineering are presented in the next section.

III. GENERATING STEGO IMAGE DATASET

Since this is the first in-depth study on Android stego
apps, a benchmarking database of images created by stego
apps is essential. With real world stego apps, there are a few
challenges we need to address when generating the dataset: (1)
the absence of source code makes it non-trivial to analyze the
apps; (2) in the scenario where the input image is transformed
(e.g., downsampled) prior to embedding, the corresponding
cover image is not saved by the app. In this section, we first
describe the procedure of original image collection, in which
we developed a camera app to achieve reliable and controlled
image capture. We then explain our manual process of analyz-
ing the stego app binaries to gain the ground truth of the apps’
embedding process. Lastly, we explain the batch cover/stego
image generation process that efficiently generates a large set
of cover/stego image pairs using binary instrumentation.

A. Collection of original images

With the goal of studying Android apps, three mobile
devices have been purchased: a Google Pixel, a Samsung
Galaxy S7, and a OnePlus 5. To better understand and control
the quality of images captured by smartphone cameras, we
develop an Android app named “Cameraw” [4] to collect
original images. Cameraw allows us to take a group of
ten pairs of images consisting of the DNG format and the
JPEG format at same time, for each fixed scene with various
exposure parameters in one click. Table I summarizes the
original images captured for this study. A total of 421 different
scenes of JPEG and DNG images were collected across all
three devices. These original images are used to generate stego
images from the 6 stego apps, which we introduce next.

TABLE I
SUMMARY OF ORIGINAL IMAGES COLLECTED FROM 3 SMARTPHONES

Source Device # Scenes JPEG DNG
OnePlus 5 120 1200 1200
Pixel1 187 1870 1870
Samsung S7 114 1140 1140
Overall 421 4210 4210

B. Generation of cover and stego images

1) Real-world Android Stego Apps: To generate the stego
images and their corresponding covers, we have chosen 6 of
the most popular stego apps from the Google Play Store,
shown in Table II. We remark that the app Steganogra-
phy M [15] is actually named “Steganography” on Google
Play Store. We append the letter M, which is the first letter
of the author’s name, to distinguish the app with the many
other stego apps also named “Steganography” on Google
Play Store. As shown in the “Output Format” column, 1 of
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TABLE II
SIX SELECTED STEGO APPS FROM GOOGLE PLAY STORE

App Name # Installs Output Format Open Source
PixelKnot 100,000 - 500,000 JPEG yes
Steganography Master 10,000 - 50,000 PNG no
Steganography M 10,000 - 50,000 PNG no
Da Vinci Secret Image 5,000 - 10,000 PNG no
PocketStego 1,000 - 5,000 PNG no
MobiStego 1,000 - 5,000 PNG yes

the 6 apps produce stego images in JPEG format while the
other 5 produce PNGs. The output format indicates the use
of frequency domain embedding (JPEG) or spatial domain
embedding (PNG). The “Open Source” column shows that
only 2 apps have their source code publicly available, which
makes the app analysis process non-trivial for the remaining
four apps. We explain our process of reverse-engineering non-
open source stego apps next.

2) Reverse engineering Android stego apps: For the 4 stego
apps that are not open source, we utilize several Android
program analysis tools to achieve reverse engineering. Given
a stego app, we first use Apktool [21], a reverse engineering
tool for Android, to decode the program binaries and resource
files from the app’s APK file. The program binaries are
decoded into an intermediate code format called Smali [9].
The resources files are decoded into XML files that contain
information about the app’s graphical user interface (GUI).
Next, we install and run the stego app on an Android device to
test its user interface. We inspect the app’s GUI structure while
clicking through different screens, and use UIAutomator [1],
an Android GUI testing tool, to retrieve the resource IDs
for different GUI widgets. Using the resource IDs, we then
identify the GUI widget (usually a button named “Embed”)
that initiates the embedding procedure, and locate the cor-
responding event handler method in the Smali code. After
the core embedding algorithm code is located, we manually
inspect the code to understand the key characteristics of the
embedding algorithm.

Our goal of reverse engineering stego apps, is to study the
following characteristics of an embedding algorithm, so that
we may batch-generate image data for our experiments:

• Embedding Domain. The image domain in which the
payload is embedded, either frequency domain or spatial
domain.

• Image Resizing. Indicates resizing of the cover image
prior to embedding. Stego apps can downsize the input
image to reduce computation time, or upscale the input
image to increase image capacity.

• Payload Pre-processing. The process that transforms the
user input message into payload bits prior to embedding.
For example, the input message can be encrypted, or
appended with a signature string or length data.

• Embedding Path. The order in which the domain val-
ues are visited to embed the payload. Some apps use
simple lexicographical embedding paths, while others use
pseudo-random embedding paths with the user password
as a seed.

• Embedding Technique. How the payload is embedded

into the domain values. Common embedding techniques
are LSB embedding in the spatial domain and F5 em-
bedding [20] in the frequency domain. However, some of
the apps we reverse-engineered have adopted their own
unique embedding techniques.

Table III shows the embedding characteristics of the 6 stego
apps we reverse engineered. Note that “user controlled” in the
column “Image Resizing” means the app lets the user decide
the output image size. In the sub-columns of “Payload Pre-
processing,” “yes” or “no” indicates the existence of payload
processing steps.

The “Embedding Domain” column shows that PixelKnot
embeds payload into the DCT coefficients of the frequency
domain, while the others embed payload in the spatial domain.

The “Image Resizing” column shows that 2 out of 6 apps
do not resize the cover image, while 3 apps may downsample
the input image. The app DaVinci Secret Image allows the user
to choose the image size from several options, including the
option to maintain the original size.

The “Payload Pre-processing” column shows the three pos-
sible payload pre-processing options: encryption, signature
string attachment, and length data attachment. Our investiga-
tion shows that prior to the embedding process, 3 apps perform
encryption on the input message, 6 apps append signatures
strings to the payload, and 3 apps append length data to the
payload. While none of the apps perform all three payload
pre-processing options, every app will attach at least either a
signature string or a length information string to the payload.
Such attachment to the payload is necessary for the app’s
extraction process, to identify the beginning and the end of
the payload and correctly extract the message. However, it
can leave patterns in the stego images that allow detection.
We provide a detailed study on signature-based steg detection
in Section IV.

The “Embedding Path” column shows that 3 apps embed
the payload along pseudo-random paths, while the others use
fixed embedding paths. The pseudo-random embedding path
is generated by a pseudo-random number generator using the
user input password as seed. The embedding path can be
recreated using the same seed. The lexicographical embedding
path starts from the top left of the image, and proceeds row
by row or column by column sequentially. The app MobiStego
uses a “regional lexicographical” order, where the cover image
and payload are first split into multiple blocks, then a portion
of payload bits is embedded into each block lexicographically.

The “Embedding Technique” column shows the variety of
embedding techniques in the chosen apps. The frequency
domain embedding app PixelKnot is based on the academic
embedding algorithm F5. Out of the 5 spatial domain em-
bedding apps, only Steganography M and PocketStego use
the standard LSB Replacement, while DaVinci Secret Image
encodes the payload into alpha channel values. MobiStego
embeds 6 bits of payload into a single pixel by replacing
the two least significant bits of all three RGB channels, and
Steganography Master embeds 8 bits of payload into one pixel
by changing the decimal digit of each pixel’s RGB value.
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TABLE III
CHARACTERISTICS OF THE EMBEDDING PROCESS IN 6 STEGO APPS

App Name Embedding Domain Image Resizing Payload Pre-processing Embedding Path Embedding TechniqueEncryption Signature String Length Data
PixelKnot frequency downsampling yes no yes pseudo-random F5
Steganography Master spatial no no yes no lexicographical Base 10 LSDa

Steganography M spatial no no yes yes pseudo-random LSB
DaVinci Secret Image spatial user-controlled no yes yes lexicographical Alpha channel encoding
PocketStego spatial downsampling no yes no lexicographical LSB
MobiStego spatial downsampling yes yes no regional lexicographical RGB channels LS2B
a Least Significant Digit replacement in base 10: replaces the “ones” digit in the cover image with one of the 3 base 10 digits of the message character, in each R-G-B planes.

3) Batch Image Generation through Instrumentation: To
achieve the goal of batch-generating stego images with fixed
embedding rates while saving the intermediate cover images,
we use binary instrumentation to change the apps’ binaries
to generate cover/stego pairs. The binary instrumentation is
achieved by first decoding the APK file into Smali code, then
modifying the Smali code to add functionalities, and finally
compiling the modified Smali code back to an APK file using
Apktool [21]. Through instrumentation, we add two necessary
functionalities to the stego apps: (1) saving the intermediate
cover image along with its stego image pair, (2) automatically
repeating the embedding process for all the input images.

Saving Intermediate Cover Images. As previously men-
tioned in Section II-C, statistical steganalysis benefits from
having cover/stego pairs that went through the same image
processing steps except for the embedding. However, real
world stego apps, as shown in Table III, often preprocess the
input image, which makes the ideal “cover” image unavailable.
The implementation of the functionality of saving the covers
varies and depends on the specific stego app. We achieved
this in two ways: (1) modify the app’s embedding function so
that it accepts “empty payloads,” in which case the produced
stego image is equivalent to the cover image, or (2) add a new
function to the stego app that can take the pre-embedding clean
image data as input, and produce an image that has the same
encoding or compression format as the stego image.

Batch Cover/Stego Generation. This functionality is nec-
essary for processing the large amount of input images in
our dataset in a timely manner. Each stego app has an added
script module that recursively scans through folders of input
images and calls the app’s existing embedding functions to
generate cover/stego pairs. Algorithm 1 shows the pseudo
code of the batch cover/stego generation script. The script
has 3 inputs: a set of clean images, a dictionary pool for
the input message, and a set of target embedding rates. For
each input image, the script first pre-processes the image and
saves the intermediate cover (Lines 2-3). The image capacity is
then calculated (Line 4). Lines 6-13 generate messages with
different target embedding rates and create stegos. For each
target embedding rate, we first calculate the length of the
embedded payload lp, then calculate the length of the input
message lm based on the knowledge acquired from reverse
engineering the app. We then take a random segment of the
dictionary with exact length lm, and proceed to call the app’s
embedding function. Relevant stego information and statistics,
including the message, password, embedding rate, change rate,

Algorithm 1 Pseudo Code of Cover/Stego Generation Script
Input: input images, dictionary, embedding rates

1: for each image in input images do
2: cover ← PREPROCESS(image)
3: SAVEIMAGE(cover)
4: c← CAPACITY(cover)
5: for each rate in embedding rates do
6: lp← c× rate . embedded payload length
7: lm← CALCULATE(lp) . input message length
8: message← GETMESSAGE(dictionary, lm)
9: password← GETPASSWORD

10: payload← PREPROCESS(message, password)
11: stego← EMBED(cover, payload)
12: SAVEIMAGE(stego)
13: SAVESTEGOINFO(message, password)
14: end for
15: end for
16: return

etc., are also stored along with the stego image in the database.
Our large message dictionary contains text from 34 complete
plays by Shakespeare.

Table IV shows the details of the stego images batch-
generated from the 6 stego apps, using images in Table I
as input. For the frequency domain app PixelKnot, we use
the original JPEG and DNG images to generate stegos. For
the other five spatial domain apps, we create PNG images
that are center-cropped from the JPEG and DNG images, to
reduce embedding time. For each input image, a total of 30
stego images are generated, including 5 stego images (with
different embedding rates) from each of the 6 stego apps.
The corresponding cover images for the stego images are also
included in the dataset. In the next two sections, we present our
study on signature-based steganalysis and machine learning
steganalysis using the generated stego image dataset.

TABLE IV
SUMMARY OF STEGO IMAGES GENERATED FOR 6 STEGO APPS

Stego App Input Format Output Format # Input #Stegos # Covers
PixelKnot JPEG+DNG JPEG 8420 42100 8420
Steganography Master PNG PNG 8420 42100 8420
Steganography M PNG PNG 8420 42100 8420
DaVinci Secert Image PNG PNG 8420 42100 8420
PocketStego PNG PNG 8420 42100 8420
MobiStego PNG PNG 8420 42100 8420
Overall 50520 252600 50520
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IV. SIGNATURE-BASED STEG DETECTION

This section provides a study on signature-based steg detec-
tion. We first discuss the definition of signatures, then analyze
the signatures in the embedding process of 4 stego apps, and
present the signature-based detection results on stego images
from the 4 apps.

A. Embedding Signatures

In the context of this paper, a signature is a fixed pattern in
the stego image that is unrelated to the cover image. In general,
there are two types of embedding signatures: (1) fixed data
written into fixed locations in the file headers, and (2) fixed
data embedded into fixed locations in the image domain. As
an example of signature type (1), the academic embedding
algorithm F5 writes comment messages into the JPEG file
header, and uses a specific bit in the JFIF header [10] to
indicate the existence of user comments. Signature type (2)
appears more frequently in our surveyed apps such as DaVinci
Secret Image and Steganography Master, where a fixed string
pattern is embedded into fixed pixel locations.

The main reason that such signatures exist is to provide aux-
iliary information for the extraction of payload. The extraction
process requires auxiliary information, such as length data or
fixed signature strings, to identify the beginning and ending
of the embedded payload. Subsequently, embedding signatures
can be used to identify stego images and even potentially
extract the payload.

As previously mentioned in Section III-B2, we use reverse
engineering techniques to analyze the embedding algorithms
from stego apps. As shown in Table III, since the 2 apps Pixel-
Knot, Steganography M use pseudo-random embedding paths,
their signature strings and length data are not in embedded
in fixed locations. The other 4 apps Steganography Master,
DaVinci Secret Image, PocketStego, and MobiStego each use
a fixed lexicographical embedding path, which indicates a
possible signature. Next, we analyze the embedding signatures
of 4 stego apps and introduce our signature-based detection
method.

B. Signature-based Detection Approach

The formats of embedded payload of the 4 stego apps are
shown in Fig 3. Each app has a different way of converting
the user input message and/or password into the embedded
payload. Attached to the messages and passwords are two
types of data: (1) signature strings which are represented with
label “$”, (2) length data, which is only used by DaVinci.
The app Steganography Master joins the password and input
message in plaintext and surrounds them with two pairs of
fixed signature strings. The embedded payload in DaVinci
consists of three segments: the signature string, the password
in plaintext, and the message in plaintext. Each segment is also
prefixed with a length data whose value is the number of bits
of the segment. The app MobiStego first encrypts the input
message using the password, then surrounds the encrypted
message with a pair of signature strings. The app PocketStego

$start $end$pw_start $pw_endpassword message

length 
data $signature length 

data password length 
data message

Steganography Master

MobiStego

DaVinci Secret Image

$endmessagePocketStego

$start $endencrypted 
message

88 24 24 88

32 32 32 32

24 24

8

length (bits):

length (bits):

length (bits):

length (bits):

Fig. 3. Format of Processed Payload in 4 Stego Apps.

only appends a short 8-bit signature string at the end of the
plaintext message.

To utilize the signature strings for steg detection, we also
must know the apps’ embedding paths and embedding tech-
niques. The embedding path determines the pixel locations in
which the signature string is embedded, and the embedding
technique determines the insertion and extraction of bits into
the pixel values. Given that all 4 stego apps use lexicograph-
ical embedding paths, and that 3 of them have fixed-length
signature data at the start of the payload, we can identify the
pixel locations that may contain unique signature data.

The embedding techniques of the 4 stego apps have been
reverse engineered, as shown in Table III. Steganography
Master first turns each 8 bits of payload into a decimal number
ranging from 0 to 255. The 3 digits of the decimal number then
replace the least significant base 10 digits of a pixel’s R, G, B
decimal values, respectively. DaVinci embeds 1 payload bit per
pixel by setting the pixel’s alpha value to 254 if the payload
bit is 0, or to 255 if the payload bit is 1. MobiStego embeds 6
payload bits per pixel by replacing the least significant two bits
of all three RGB values. PocketStego uses the standard LSB
Replacement embedding where each payload bit overwrites a
pixel’s LSB in the Blue channel only.

With the knowledge of the signature strings, embedding
paths, and embedding techniques from the 4 stego apps, we
implement 4 stego detection functions. Each stego detection
function corresponds to one of the stego apps. Each detection
function takes a test image as input, and outputs a decision on
whether the test image is a stego image produced by a specific
stego app. The decision is made by extracting the embedded
bits based on the stego app’s embedding pattern, and checking
whether the extracted payload matches the correct payload
format. Next, we present our experimental results on signature-
based steg detection.

C. Experimental Result

The image dataset for this experiment contains 202,080
images including 168,400 stego images and 33,680 cover
images from the 4 stego apps: Steganography Master, DaVinci
Secret Image, MobiStego, and PocketStego. The test results are
shown in Table V. For each detector, the test data is grouped
into two categories: (1) stego images generated from this stego
app (labeled as SM, DV, MS, PS for short), and (2) all other
images, including cover images and stego images from the
other 3 stego apps. The detection results for the two groups
of data are shown separately for each stego detector. As the
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results show, the 3 stego detectors for Steganography Master,
DaVinci Secret Image, and MobiStego correctly identify all
stego images generated from their corresponding apps, while
correctly distinguishing these stego images from cover images
and other stego images. While the PocketStego detector has
correctly identified all the PocketStego stego images, it also
mis-identifies the majority of the other images.

TABLE V
RESULTS OF SIGNATURE-BASED STEG DETECTION

Stego App Test Images Image Count Accuracy

Steganography Master SM Stego Images 42,100 100%
Other Images 159,980 100%

DaVinci Secret Image DV Stego Images 42,100 100%
Other Images 159,980 100%

MobiStego MS Stego Images 42,100 100%
Other Images 159,980 100%

PocketStego PS Stego Images 42,100 100%
Other Images 159,980 0.23%

The prefect results for Steganography Master, DaVinci Se-
cret Image, and MobiStego detectors are as expected, as these
apps have very distinctive signature strings in their payload.
For example, as shown in Fig 3, Steganography Master has
two fixed signature strings (112 bits in total), DaVinci Secret
Image has 64 bits of distinct signature strings, and MobiStego
has 24 bits of distinct signature strings, at the beginning of
their payloads. On the other hand, PocketStego has only one
8-bit signature string at the end of the payload, without a
fixed location. This “weak” signature can be found in not only
the stego images from PocketStego, but also randomly occurs
in 99.77% of other images as well, resulting in very poor
accuracy.

Our test results demonstrate that it is possible to detect
real world stego images based on app embedding signatures.
The advantage of signature-based steg detection is that, by
looking for known signatures in a test image, it can reliably
identify stego images, and perhaps even extract the embedded
payload. However, signature-based steg detection relies on
the uniqueness of signature strings. If the developer changes
the signature string with an update of the app, then it is
possible the new signature will not be detected. A longer
signature string with more patterns can provide better detection
than shorter signatures. Furthermore, determination of the
pattern of the signature string from the app binaries is not
a trivial process, especially when the app has anti-analysis
features such as obfuscation or native code. Our future work
on signature-based detection is to automate the process of
extracting signatures from stego apps using program analysis
methods.

V. DETECTING STEGO IMAGES BY MACHINE LEARNING

Although we achieve near perfect results for detecting stego
apps with distinctive signatures, many stego apps do not write
any signature to the images they create. For those apps without
signatures, we use machine learning methods. In this section,
two Android apps, PixelKnot and Steganography M, are se-
lected for our studies, using two well-known methods: the F5

algorithm, and spatial LSB embedding. To our knowledge, this
is the first time a ML detection algorithm is applied to identify
stego images generated by mobile stego apps. We implement
the CC-JRM [11] for feature extraction on JPEG images and
SRM [6] for feature extraction on PNG images. The FLD
ensemble classifer [12] performs the classification.

A. Case Study - PixelKnot
PixelKnot [19] is an Android app that uses a modified

version of the embedding algorithm F5 [20] and it outputs
a stego image in JPEG format. Before embedding, PixelKnot
downsamples the input image if its size exceeds 1280*1280.
The message is encrypted using one part of the password,
while the other part of the password is used as seed for the
F5 algorithm to generate a pseudo-random embedding path.

1) Experiments and Results: The goal of our first experi-
ment is to study if the academic ML methods can be applied
to detect the stego images created by PixelKnot. For every
selected original image (DNG or JPEG), PixelKnot loads the
standard Picasso package to downsample this larger image into
a smaller bitmap object, which can be viewed as a 8-bit image
in the spatial domain1. Cover and stego images with different
embedding rates are generated from all original images by
reverse engineering as discussed in the previous section. To
evaluate the performance of the classic ML method, we
implement CC-JRM and FLD ensemble classifiers for feature
extraction and classification, respectively.

To give the first impression of ML detector for stego apps,
for every device, we randomly select 850 original JPEG
images as the input, and create the cover-stego pairs from
those originals. We use 500 for training, and 350 for testing.
The results are presented in Table VI.

TABLE VI
DETECTING STEGO IMAGES CREATED BY PIXELKNOT WITH 10%

PAYLOAD (INPUT IMAGES ARE JPEG)

Data Source Original Image Size Avg. Error Rate
Google Pixel 4048 × 3036 1.0%
Samsung Galaxy S7 4032 × 3024 7.6%
OnePlus 5 4608 × 3456 0.3%
Mixture of above three devices Flexible 3.2%

As we can see from the Table VI, when the image data
sources are fixed, the results are quite encouraging. Even in
the case when we mix the images from all three devices,
the average error rate is just about 3%. Table VI shows that
with the knowledge of the suspect image data source, for
a fixed embedding rate, an academic ML based detection
method works well in detecting the stego images generated
from PixelKnot.

We point out that the results in Table VI are based on the
assumption that we have knowledge of the source devices of
the suspected images. However, this is not typical in a real-
world scenario. The scenario when the source of the target
image is not in the training database is called the cover-source-
mismatch problem in steganalysis [13]. Table VII lists the

1We use grayscale images in our experiments.
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Fig. 4. Detecting stego images created by PixelKnot, where the original
images are JPEG images collected from Google Pixel.
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Fig. 5. Detecting stego images created by PixelKnot, where the original
images are DNG images collected from Google Pixel.

results in the case when the sources of test images are not
involved in the training database.

TABLE VII
DETECTING STEGO IMAGES CREATED BY PIXELKNOT WITH 10%

PAYLOAD, IN THE COVER-SOURCE-MISMATCH CASE.

Test Data Source Training Data Source Avg. Error Rate
Google Pixel Samsung Galaxy s7 & OnePlus 5 1.3%
Samsung Galaxy s7 Google Pixel & OnePlus 5 40.0%
OnePlus 5 Google Pixel & Samsung Galaxy s7 35.7%

In Table VII, the average error rates are not at the same
level for the three cover-source-mismatch cases. Although the
error in testing images from Google Pixel is almost as low
as the error in Table VI, the error rates of detecting stego
images from the other two devices when they are out of the
training datasets, are much greater than those in Table VI. Our
preliminary results show that it is not desirable to use only
one or two devices to build a classifier for blind detection
on multiple devices. Thus, knowing the source of the target
images in detecting stego apps will significantly reduce the
error rate for a ML based analyzer.

TABLE VIII
AVERAGE ERROR RATES FOR DETECTING STEGO IMAGES CREATED BY

PIXELKNOT WITH DIFFERENT PAYLOAD SIZES.

Training Set: 5% Stego 10% Stego 15 % Stego 20% StegoTest Set:
5% Stego 7.9% 41.4% 47.9% 49.6%
10% Stego 4.7% 1.0% 12.9% 39.3%
15% Stego 3.9% 0.9% 0.4% 2.86%
20% Stego 4.4% 0.7% 0.4% 0.2%

In the previous experiment, the embedding rate is fixed at
10% for all stego images we created. To study the possibility
of detecting stego images that have different embedding rates,
we use the previous input images collected from Google Pixel
to generate three more sets of stego images with three different
embedding rates: 5%, 15% and 20%. For each subset, we build
a stego classifier for a fixed embedding rate. The results are
presented in Table VIII.

In Table VIII, for the same test data, the lowest error rate
always occurs in the diagonal entries, for which the training
stego images have the same embedding rate as the images
for testing. Another interesting phenomenon is that the many
error values located above the diagonal are extremely high,
while error values below the diagonal look acceptable. Table
VIII gives us an impression that it may be possible to apply
well-trained stego classifiers based on 5% embedding rate to
suspect images having unknown payloads. We have to admit
that this conclusion is limited to the case when all images are
from only one mobile phone, which is the Google Pixel, and
it is left to future research for the verification by larger-scale
experiments for a variety of sources.

The performance of a ML based steg detector can depend
on the training sample size and the embedding rate for the
target data. To test this, with the Google Pixel data, we use
four different sample sizes for the training set, at four different
embedding rates, and average the error rate over 10 different
random drawings of the training data. The results are shown
in Fig. 4 and Fig. 5. It is clear from both figures that as the
embedding rate increases, the average error rate decreases,
for all sample sizes. Also, increasing the size of the training
set slightly reduces the error, especially when the embedding
rate is very low. Futhermore, because PixelKnot preprocesses
and downsamples the input images, the choice for the format
of input image, JPEG or DNG, does not cause a significant
difference between the results for the two experiments.

B. Case Study - Steganography M

To study how well a ML detection method works in the
case when stego images are created by spatial domain em-
bedding algorithms, we run our second case study for the app
Steganography M [15]. Steganography M is an Android stego
app that uses spatial domain embedding with pseudo-random
embedding paths and implements an embedding algorithm
very similar to the standard LSB spatial embedding. From the
clues we found during the program analysis, we know that the
cover image is not resized before embedding, and the pseudo-
random embedding path is generated from the user password.

1) Experiments and Results: Since there is no preprocess-
ing of the image data by Steganography M, the noise levels
of input images can affect the detection results significantly.
For that reason, two original image formats, JPEG and DNG,
are used in this case study. However, with limited time
and resources, we use cropped grayscale PNG images with
dimension 512 × 512 from original images as the input
images. One benefit of such a choice is that feature extraction
for smaller images is much more efficient. Another important
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reason is that using processed PNG images for the input can be
viewed as clean cover images, since they are not compressed
or downsampled by the app. With the help of Google Android
emulator, we create thousands of stego images with varied
embedding rates for all original images, both JPEG and DNG,
collected by the app Cameraw installed on all three devices.

In this experiment, SRM and ensemble classifiers are ap-
plied for feature extraction and classification, respectively. For
each fixed embedding rate, we randomly select a sample of
images for training and then test the classifier on another
sample. Table IX provides the result when JPEG images are
used to generate the inputs. As we can see from Table IX,
when original images are in JPEG format, the ML based steg
detectors work so well that even for a very low embedding rate
(< 5%), the error rates are never above 3% for all devices.

TABLE IX
DETECTING STEGO IMAGES CREATED BY STEGANOGRAPHY M

.ORIGINAL IMAGES ARE JPEG, TRAINING SAMPLE SIZE = 500, TEST
SAMPLE SIZE = 350.

Data Source Embedding Rate Avg. Error Rate

Google Pixel
3% 0.4%
5% 0.0%
8% 0.0%

Samsung Galaxy S7
3% 1.3%
5% 0.9%
8% 0.4%

OnePlus 5
3% 2.7%
5% 1.4%
8% 1.0%

As we did for Pixelknot, the results of training on one
embedding rate and detecting with different embedding rates is
summarized in Table X. In this experiment, only JPEG images
from Google Pixel are used to generate input images, and for
every classifier, 500 random pairs of cover-stego images are
used for training, 350 for testing. The results in Table X are
very similar to what we concluded for the app Pixelknot.

TABLE X
AVERAGE ERROR RATES FOR DETECTING STEGO IMAGES CREATED BY

STEGANOGRAPHY M WITH DIFFERENT PAYLOAD SIZES.

Training Set: 2% Stego 3% Stego 5 % Stego 7% StegoTest Set:
2% Stego 2.9% 28.4% 48.0% 49.6%
3% Stego 2.4% 0.4% 0.6% 28.4%
5% Stego 2.7% 0.6% 0.0% 0.1%
7% Stego 2.6% 0.4% 0.0% 0.0%

However, as we mentioned above, there is no preprocessing
procedure for the input images by Steganography M. As a
result, compared to using JPEG as the data source, the noisy
DNG images significantly increases the detection errors. To
illustrate this phenomenon, using the device Google Pixel,
we randomly select 350 JPEG images and 350 DNG images
to create cover-stego pairs as the test dataset at different
embedding rates, repeat ten times, and for each time and each
embedding rate, we create the corrsponding training datasets
with four different sample sizes. The results, as shown in Fig.
6and Fig. 7, show that using the DNG images to generate
the input images for Steganography M produces higher error
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Fig. 6. Detecting stego images created by Steganography M, where the
original images are JPEG images collected from Google Pixel.
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Fig. 7. Detecting stego images created by Steganography M, where the
original images are DNG images collected from Google Pixel.

from a ML classifier. Moreover, even with 1000 cover-stego
pairs for training and a high embedding rate of 15%, the error
of misclassification is at a minimum of 16% for DNG images
from one phone.

Our experiments show that the knowledge of stego apps’
embedding algorithm can be beneficial for stego detection. In
both experiments, we assume that we have the knowledge of
the app that created stego images. But this is not common
in practice, as we may have very little information about
which stego apps were used. To improve the feasibility of
machine learning based detection, our future work includes:
(1) analyzing and studying more real world stego apps, and
(2) exploring the possibility of training with one known app
and detecting stego images from a different app.

VI. CONCLUSION

In this paper, we analyze six Android apps that implement
steganography algorithms. A major contribution of this paper
is our procedure to analyze the code in the app by applying
reverse-engineering techniques to the binary code. We use
instrumentation techniques to perform the non-trivial task to
batch-generate cover-stego image pairs for machine learning
steganalysis. Thus, with appropriate numbers of images, we
create machine learning classifiers and perform successful
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steganalysis on stego images created from two mobile apps.
We also present a detailed analysis of four stego apps that
contain a signature, and perform steg detection on these
images. While this is currently done in a manual process, our
future efforts will investigate methods to automate the program
analysis of app code. Another challenge is to go beyond the
task of identifying stego or innocent images: the extraction
of hidden contents. A program analysis approach can also be
useful to solve this problem. Another future challenge we plan
to implement are other learning paradigms, including deep
learning.
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[13] J. Kodovskỳ, V. Sedighi, and J. J. Fridrich. Study of cover
source mismatch in steganalysis and ways to mitigate its
impact. In Media Watermarking, Security, and Forensics,
page 90280J, 2014.

[14] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot
framework for java program analysis: a retrospective.
In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), volume 15, page 35, 2011.

[15] J. Mexnik. Steganography. https://play.google.com/store/
apps/details?id=com.meznik.Steganography, 2014. Last
Accessed: 2017-06-10.

[16] L. Motherboard, by Vice Media. Muslimcrypt.
https://motherboard.vice.com/en us/article/ne4x7w/
muslim-crypt-jihadi-encryption-app, 2018. Last
Accessed: 2018-01-11.

[17] T. Pevny, P. Bas, and J. Fridrich. Steganalysis by
subtractive pixel adjacency matrix. IEEE Transactions on
Information Forensics and Security, 5(2):215–224, June
2010.

[18] H. S. Stern. Statistical issues in forensic science. Annual
Review of Statistics and Its Application, 4:225–244,
2017.

[19] The Guandian Project. Pixelknot. https://play.
google.com/store/apps/details?id=info.guardianproject.
pixelknot, 2017.

[20] A. Westfeld. F5—a steganographic algorithm. In I. S.
Moskowitz, editor, Information Hiding, pages 289–302,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[21] R. Winiewski and C. Tumbleson. Apktool - A tool for re-
verse engineering Android apk files. https://ibotpeaches.
github.io/Apktool/, 2017.

1573

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:57-0500
	Preflight Ticket Signature




