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Abstract—Images/videos captured from outdoor visual devices 
are usually degraded by turbid media, such as haze, smoke, fog, 
rain, and snow. Haze is the most common one in outdoor scenes 
due to the atmosphere conditions. This paper presents a deep 
learning-based architecture for single image dehazing via image 
restoration. Instead of learning an end-to-end mapping between 
each pair of hazy image and its corresponding haze-free one 
adopted by most existing approaches, we propose to transform the 
problem into the restoration of the image base component. By first 
decomposing the hazy image into the base and the detail 
components, haze removal can be achieved by learning a CNN 
(convolutional neural network) only for mapping between hazy 
and haze-free base components, while the detail component can 
be further enhanced. As a result, the final dehazed image is 
obtained by integrating the haze-removed base and the enhanced 
detail image components. Experimental results have 
demonstrated good efficacy of the proposed method, compared 
with state-of-the-art results.  

I. INTRODUCTION 

Different weather conditions, such as haze, fog, smoke, rain, 
or snow will cause unpleasing visual effects in images [1]–[3]. 
Such artifacts may significantly degrade the performances of 
several outdoor vision systems, such as event detection and 
understanding, object detection, tracking, and recognition, and 
scene analysis and classification, for outdoor surveillances or 
ADAS (advanced driver assistance systems) applications [4]. 
In addition, hazing artifacts have been also shown to 
significantly influence the performance of image/video 
compression [5], which will degrade the transmission and 
storage efficiency for digital visual data. Therefore, removal of 
weather effects in images/videos has been important and 
received much attention. In this paper, we focus on haze 
removal (or dehazing) from a single image. 

Based on the fact that haze would depend on unknown depth, 
dehazing is therefore very challenging. Moreover, if the 
available input is only single hazy image, the problem is under-
constrained and more challenging. Therefore, most traditional 
dehazing approaches have been presented relying on using 
multiple hazy images as input or additional prior knowledge 
[6], which are usually impractical in several real applications. 

To achieve single image dehazing [7]–[9], the atmospheric 
scattering model [1]–[3] has been commonly used to describe 
the image formation in the presence of haze, and great success 
has been obtained relying on stronger priors or assumptions. In 
this model, a hazy image is formulated as 
 

𝐼ሺ𝑥ሻ ൌ 𝐽ሺ𝑥ሻ𝑡ሺ𝑥ሻ ൅ 𝐴൫1 െ 𝑡ሺ𝑥ሻ൯,                       ሺ1ሻ 
 
where 𝐼 is the observed hazy image, 𝐽 is the scene radiance (the 
original haze-free image to be recovered), 𝑡  is the medium 
transmission (or transmission map) indicating the portion of the 
light that is not scattered and reaches the camera, and 𝐴 is the 
global atmospheric light. Based on this image degradation 
model, it was proposed in [7] to estimate the albedo of the scene 
and the medium transmission under the assumption that the 
transmission and the surface shading are locally uncorrelated 
for single image dehazing. Moreover, an effective image prior, 
called dark channel prior [8] was proposed for single image 
dehazing, where the key observation is that most local patches 
in outdoor haze-free images include some pixels whose 
intensity is very low in at least one color channel. This 
approach [8] was then further extended to pixel-based dark 
channel prior in [9] with performance improved. Nevertheless, 
these traditional approaches may not well restore heavily hazy 
images and may fail in the cases where the constraints/priors/ 
assumptions are invalid. 

To achieve better dehazing performance, based on the deep 
investigation in haze-relevant image features, a learning 
framework for single image dehazing was presented in [10]. 
Furthermore, relying on the rapid development of deep 
learning techniques with great success in numerous perceptual 
tasks (e.g., object detection, image understanding, and speech 
recognition) [11]–[12], some deep learning-based single image 
dehazing frameworks [13]–[15] have been presented. They 
have shown that haze-relevant features would be automatically 
learned through a deep CNN (convolutional neural network) to 
get better dehazing results. 

For example, in [13], a multi-scale deep neural network for 
single image dehazing was proposed by learning the mapping 
between hazy images and their corresponding transmission 
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maps. The dehazed image can then be produced based on the 
atmospheric scattering model (denoted by MSCNN). Similarly, 
a trainable end-to-end deep CNN (denoted by DehazeNet) for 
medium transmission estimation was also proposed in [14], 
demonstrating that most haze-relevant features can be learned 
through the network. Furthermore, a CNN-based single image 
dehazing network is designed in [15] based on a reformulated 
atmospheric scattering model for directly generating the 
dehazed image. 

In this paper, to get better dehazing results with lower run-
time computational complexity, a novel deep CNN architecture 
is proposed for single image dehazing. The major contribution 
of this paper is three-fold: (1) by first decomposing the hazy 
image into the base and the detail components, haze removal 
can be achieved by learning a CNN only for mapping between 
hazy and haze-free base components, while the detail 
component can be further enhanced separately to avoid 
possible blurring effects (loss of details) in most existing 
methods; (2) the architecture of our CNN is relatively simple, 
is with lower run-time complexity, and is suitable for real 
applications; and (3) our dehazing process can be iterated 
several times to progressively refine the visual quality of output 
images without resulting in over-enhancement. 

The rest of this paper is organized as follows. In Sec. II, we 
present the proposed single image dehazing framework. In Sec. 
III, experimental results are demonstrated. Finally, Sec. IV 
concludes this paper. 

II. PROPOSED SINGLE IMAGE DEHAZING FRAMEWORK 

As shown in Fig. 1, the proposed deep learning-based single 
image dehazing framework consists of the three stages: (1) the 
preprocessing stage via image decomposition; (2) the dehazing 
stage relying on CNN to produce the haze-removed base image 
component; and (3) the generation stage of final dehazed image 
by integrating the clean base image component and the 
enhanced detail image component. The details of the three 
stages shall be elaborated in the following three subsections, 
respectively. 

A. Preprocessing and Problem Formulation 

To avoid possible detail loss in the image dehazing process, 
in our method, we first decompose an input hazy image into the 
base component and the detail component via image filtering. 
The main principle is to keep the haze and low-frequency 
information in the base component, while keeping the image 
details (edge/texture information) in the detail component. To 
achieve this goal, the well-known guided image filter [16] is 
employed based on that the filter performs well as an edge-
preserving smoothing operator in linear time. 

For an input hazy image 𝐼 , we perform guided image 
filtering to I to obtain the base component 𝐼௕௔௦௘ and the detail 
component 𝐼ௗ௘௧௔௜௟, such that 
 

𝐼 ൌ 𝐼௕௔௦௘ ൅ 𝐼ௗ௘௧௔௜௟,                                      ሺ2ሻ 
 
where 𝐼௕௔௦௘ ൌ 𝐺ሺ𝐼ሻ, and 𝐺 denotes the guided image filtering 
operator. This signal decomposition-based idea has been also 
shown to be efficient in several other applications (e.g., [17]–
[23]) 
    To this end, we formulate the single image dehazing problem 
as the mapping between a hazy base image component and its 
corresponding hazy-free component. To solve the problem, we 
intend to learn a mapping function 𝐹  subject to the loss 
function ℓ as: 
 

ℓሺΘሻ ൌ
1
𝑁

෍ฮ𝐹൫𝑌௝; Θ൯ െ 𝑋௝ฮ
ଶ

ଶ
ே

௝ୀଵ

,                     ሺ3ሻ 

 
where Θ denotes the set of parameters trained for our CNN 
(described in Sec. II.B), 𝑁 is the number of training patch pairs, 
and 𝐹 is the mapping function between each pair of training 
patches. Here, a pair of training patches includes a patch 𝑌௝ 
extracted from a hazy base component and its corresponding 
patch 𝑋௝  extracted from the corresponding hazy-free base 

Fig. 1. The diagram of the proposed deep learning-based single image dehazing framework. 
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component. The loss function ℓ is minimized using the Adam 
optimization algorithm designed for first-order gradient-based 
optimization of stochastic objective function [24]. 

B. Learning of CNN for Haze Removal of Base Component 

As shown in Fig. 2, the proposed CNN aims at transforming 
an input hazy base image component to its corresponding hazy-
removed base component. Our CNN consists of eight layers, 
where the first is a convolutional layer (denoted by Convi for 
the i-th layer in Fig. 2) with 16 filters of kernel size 7×7, and 
the last is a deconvolutional layer with 3 filters of kernel size 
3×3. In addition, the 2nd, 4th, and 6th layers are the multi-scale 
convolutional layers with filter sizes of 7×7 and 5×5, 5×5 and 
3×3, and 3×3 and 1×1, respectively. For each sub-layer 
(denoted by Convi_j for the j-th sub-layer of the i-th layer in Fig. 
2) with larger filter size of the i-th layer (i = 2, 4, 6), 8 feature 
maps will be produced (the upper half of Fig. 2), whereas for 
the sub-layer with smaller filter size of the i-th layer, 16 feature 
maps will be produced (the lower half of Fig. 2). All of the 
convolutional operations (except the last layer) in our CNN are 
all with the rectified linear unit (ReLU) function [25] as the 
activation function. ReLU is mainly utilized for nonlinearity, 
which has been shown to allow for faster training than other 
non-linear separators. 

Moreover, to avoid the problem of possible color distortion 
in a dehazed image, we propose to fully preserve the feature 
maps produced by a previous layer, which will be fed into the 
next layer. To achieve this, we include the three shortcut 
connections and three concatenation layers (denoted by Concati 
for the i-th layer in Fig. 2), inspired by the deep residual 
learning framework proposed in [26], which utilized the 
shortcut connections to skip one or more layers. More 
specifically, let’s consider the i-th layer (i = 2, 4, 6, in Fig. 2, 
as an example), including two convolutional sub-layers (with 
ReLU functions) and a shortcut connection, and assume x and 
y are the input and output vectors, respectively, of this layer. 
Formally, in this paper, we consider the building block of our 
CNN, defined as: 

 
𝑦 ൌ 𝜎൫𝑥 ∗ 𝑊௜_ଵ൯ ൅ 𝜎൫𝑥 ∗ 𝑊௜_ଶ൯ ൅ 𝑥,                  ሺ4ሻ 

 
where “∗” denotes the convolution operation, 𝜎  denotes the 
ReLU function, 𝑊௜_ଵ  and 𝑊௜_ଶ  are the filter weights to be 
learned of the sub-layer Convi_1 and Convi_2, of the i-th layer, 
respectively, and the “൅” operation integrates the three items 
realized by a concatenation layer. Since the depths of the 
feature maps produced by the three items are different, instead 
of utilizing the element-wise addition used in [26], the 
concatenation layer is used to stack all of the feature maps, 
which is then fed into the next layer.  

As a result, by performing deep residual learning to the CNN, 
the output dehazed base image component can be produced 
almost without color distortion. On the other hand, our CNN 
also benefits the inherited advantages from the deep residual 
learning, such as preventing gradient explosions while 
avoiding the vanishing gradient problem, and fast convergence 
[26]. In addition, by utilizing the multi-scale convolutional 
layers of different filter sizes enables our CNN to extract multi-
scale image features, which would be also beneficial to recover 
hazy images. 

C. Reconstruction of Haze-free Image 

As a result, the final haze-removed image 𝐽 (for the input 
hazy image 𝐼) is obtained by integrating the dehazed base and 
enhanced detail components as: 
 

𝐽 ൌ 𝐷ሺ𝐼௕௔௦௘ሻ ൅ 𝐸ሺ𝐼ௗ௘௧௔௜௟ሻ,                              ሺ5ሻ 
 
where 𝐷ሺ𝐼௕௔௦௘ሻ denotes the dehazed base component (𝐼௕௔௦௘) 
via the proposed deep network, and 𝐸ሺ𝐼ௗ௘௧௔௜௟ሻ is the enhanced 
detail component (𝐼ௗ௘௧௔௜௟ ) of the input hazy image. In our 
method, 𝐸ሺ𝐼ௗ௘௧௔௜௟ሻ ൌ 𝑀 ൈ 𝐼ௗ௘௧௔௜௟, where M is a factor related 
to the entropy of the input hazy image 𝐼, which is obtained by 
exploring the relationship between each pair of detail image 

Fig. 2. The proposed deep convolutional neural network architecture for single image dehazing. 
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and its groundtruth in 30,000 training image pairs via nonlinear 
regression. 

On the other hand, a unique property of our method is that 
iteratively performing the proposed dehazing process would 
progressively enhance the dehazing performance. That is, by 
feeding the output haze-removed image into the system as an 
input hazy image again would obtain better dehazing result. 
This advantage mainly comes from that for each dehazing 
process, we first decompose the input hazy image into the base 
and the detail components. As a result, the image details would 
be well preserved while the color distortion would be avoided 
based on our CNN even if the dehazing process is iteratively 
performed several times. 
 

III. EXPERIMENTAL RESULTS 

A. Network Training and Parameter Settings 

To train the proposed deep CNN, the Outdoor Training Set 
(OTS) from the RESIDE (REalistic Single Image DEhazing) 
dataset with a large diversity of scenes [27] was used. OTS 
includes 313,950 images synthesized from collected real world 
outdoor scenes, where each image pair contains one hazy 
image and its haze-free groundtruth. To create our training 
dataset, we randomly extracted several pairs of patches of size 
16 ൈ 16 from each hazy image and its corresponding haze-free 
groundtruth in OTS. As a result, we totally obtained 1,000,000 
pairs of patches. For each image patch, we applied our 
preprocessing process via guided image filtering [16] to get its 
base component to form the training patch. During the training 

(a) (b) (c)  (d)  (e) 

Fig. 3. Dehazing results on synthetic images from SOTS dataset: (a) haze-free image; (b) synthetic hazy version of (a); the dehazed 
results obtained by (c) MSCNN [13]; (d) DehazeNet [14]; and (e) Proposed method. 

 

  

(a) (b) (c) (d) (e) 

Fig. 4. Dehazing results on synthetic images from HSTS dataset: (a) haze-free image; (b) synthetic hazy version of (a); the dehazed 
results obtained by (c) MSCNN [13]; (d) DehazeNet [14]; and (e) Proposed method. 

TABLE I 
AVERAGE QUANTITATIVE RESULTS ON SYNTHETIC HAZY IMAGES IN 

SOTS DADASET, IN TERMS OF PSNR (IN DB) AND SSIM METRICS. 
 

 MSCNN [13] DehazeNet [14] Proposed 
PSNR 21.084 24.179 25.3849 
SSIM 0.780 0.820 0.872 

 

TABLE II 
AVERAGE QUANTITATIVE RESULTS ON SYNTHETIC HAZY IMAGES IN 

HSTS DADASET, IN TERMS OF PSNR (IN DB) AND SSIM METRICS. 
 

 MSCNN [13] DehazeNet [14] Proposed 
PSNR 20.273 25.528 25.121 
SSIM 0.722 0.836 0.860 
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process, the filter weights are initialized by drawing randomly 
from a Gaussian distribution. The learning rate is set to 1 ൈ
10ିହ, and our network is trained with a batch-size of 20 in 100 
epochs.  

B. Quantitative Results on Synthetic Hazy Images 

To quantitatively evaluate the performance of the proposed 
deep learning-based single image dehazing method, two state-
of-the-art methods, MSCNN [13] and DehazeNet [14], were 
used for comparisons. The two well-known metrics, PSNR 
(peak signal-to-noise ratio) and SSIM (structural similarity 
index) [28] were used for quality assessment of haze-removed 
images. 

In the experiments, two testing image sets, SOTS (Synthetic 
Objective Testing Set) and HSTS (Hybrid Subjective Testing 
Set), from the RESIDE dataset [27] were used. We picked the 
500 outdoor scene images and their corresponding synthetic 
hazy images from SOTS, and 10 synthetic outdoor hazy images 
(with groundtruths) from HSTS. The subjective and objective 
results for the SOTS testing images obtained by MSCNN [13], 
DehazeNet [14], and the proposed method are shown in Fig. 3 
and Table I, respectively. Moreover, Fig. 4 and Table II, 
respectively, display the subjective and objective results for the 
HSTS testing images. 

As revealed by Figs. 3-4 and Tables I-II, the proposed 
method significantly outperforms MSCNN [13], and 
outperforms or is comparable with DehazeNet [14]. For 
example, based on Fig. 4, MSCNN may suffer from color 
distortion (e.g., sky color) while the proposed method better 
keeps the color information beneficial from our deep residual 
learning network structure. In addition, based on Fig. 3, 
DehazeNet may loss some image details in darker regions (e.g., 
grass regions) while our method better keeps the texture 

information beneficial from preservation of details in our 
image decomposition architecture. 

C. Subjective Results on Real-World Hazy images 

To evaluate our method on realistic hazy images, we selected 
some challenging natural images, which were found to be 
highly challenging for dehazing [7]–[8]. As revealed by Fig. 5, 
our method is found to generalize well on realistic hazy images 
in visual quality, and preservations of details and color 
information in dehazed images. The two compared state-of-
the-art methods still suffer from the problems of possible color 
distortion or lack of details in dehazed images. 

D. Iterative Improvements of Proposal Method 

To verify the unique property for iteratively performing the 
proposed dehazing process would progressively enhance the 
dehazing performance, we show the dehazing results on a real-
world hazy image by performing our method with one and two 
iterations, respectively, in Fig. 6. It can be observed that as the 
number of iterations increases, the dehazing result is 
progressively improved while preserving image details and 
color information. 

E. Run-Time Analysis 

The proposed method was implemented in Python 
programming language with TensorFlow on a personal 
computer equipped with Intel® Core™ Core i7-4790 processor, 
16 GB memory, and NVIDIA GeForce GTX 1080 GPU. We 
estimated the run-time (in seconds with only CPU utilized) for 
dehazing 500 synthetic hazy images from SOTS dataset, and 
report the average processing time per image (of size 620×460) 
in Table III (with those of MSCNN and DehazeNet). It should 
be noted that the online available public open sources of 
MSCNN [13] and DehazeNet [14] were implemented by 

(a) (b) (c) (d) 

Fig. 5. Dehazing results on challenging natural hazy images: (a) hazy image; the dehazed results obtained by (b) MSCNN [13]; (c) DehazeNet 
[14]; and (d) Proposed method. 
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Matlab. In addition, with the utilization of GPU, our method 
only takes 0.48 seconds to process one hazy image of size 
620×460. As a result, our method reveals good efficiency, 
thanks to its lightweight deep architecture.  

 

IV. CONCLUSIONS 

In this paper, we have proposed a novel deep CNN 
architecture for single image haze removal. Our method first 
decomposes an input hazy image into the base and detail 
components. The base component is fed into our lightweight 
CNN with deep residual learning to obtain the haze-removed 
base component while preserving the color information for the 
image. The detail component is enhanced by nonlinear 
regression-based image enhancement while preserving the 
original image details. Our experimental results show that the 
proposed method achieves better or comparable performance 
with state-of-the-art single image dehazing algorithms. 
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