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Abstract— In this work, we propose a system that can recognize 

smoking action. It utilizes data balancing and data augmentation 

based on GoogLeNet and Temporal segment networks 

architecture to achieve effective smoking action recognition. The 

experimental results show that the smoking accuracy rate can 

reach 100% for Hmdb51 test dataset. For additional irrelevant 

movie smoking clips, the accuracy can also be as high as 91.67%.  

I. INTRODUCTION 

Cigarette smoking increases risk for death from all causes in 

men and women. The risk of dying from cigarette smoking has 

increased over the last 50 years worldwide [1]. If one stands 

next to a smoker, this person still can be infected, called passive 

smoking. Consequently, smoking is prohibited in many closed 

public areas such as government buildings, educational 

facilities, hospitals, enclosed sport facilities, and buses [1].  

However, it still often happens that smokers smoke even in 

highly prohibited places such as hospitals and elementary 

school campuses. 

The objective of this work is to develop a smoking action 

recognition system based on deep learning, which allows quick 

discovery of smoking behavior. It is especially useful in a video 

surveillance intensive used environment. 

Deep learning technique has shown outstanding 

performance in computer vision. Particularly, Convolutional 

Neural Networks (CNNs) achieve excellent performance from 

learning useful representations for image classification [1, 2, 3, 

4, 5, 6], object detection [7, 8], and video classification. For 

action recognition [9, 10, 11, 12, 13], CNNs obtain better 

results compared with traditional methods with hand crafted 

features [14]. 

There exist three types of architectures for video 

representations of action recognition: (1) two-stream CNNs [9], 

(2) 3D CNNs [11], and (3) 2D CNNs with temporal structure 

[10]. Two-stream CNNs combine appearance and motion 

information from RGB color images and optical flow images. 

They train separate network for spatial network and temporal 

network. Finally, fusing prediction scores from two-stream 

network. However, 2-stream CNNs need much time to train 

and crop optical flow. 3D CNNs directly use 3D convolution 

and 3D pooling training model from stacked RGB to get 

spatiotemporal features. However, at the moment, its 

performance is inferior to two-stream CNNs. 2D CNNs with 

temporal model can capture long-term temporal information. It 

satisfies our requirement in getting video temporal action. 

II. RELATED WORK ON CNN IN VIDEO CLASSIFICATION 

K. Simonyan et al. [9] were the first team who proposed two-

stream CNNs on action recognition. It calculated the motion 

information from adjacent video frames to get the optical flow, 

and utilized multi-frame optical flow and single color image to 

train temporal CNN and spatial CNN. Imagenet was chosen as 

the pre-trained model. Both networks used AlexNet [3] as the 

training model. The results from two trained networks were 

directly averaged or fused by support vector machine. The 

fused results were used for classification.  

L. Wang et al. [10] extended the two-stream CNNs 

architecture by cutting a video stream into K clips {S1, S2,..., SK} 
(K =3 in this work). A temporal segment network (TSN), in 

which an RGB image {T1, T2, ..., TK} was chosen randomly from 

corresponding clip, is described in (1),  

 

TSN(𝑇1, 𝑇2, … , 𝑇𝐾) =
ℋ(𝒢(ℱ(𝑇1;W), ℱ(𝑇2;W),… , ℱ(𝑇𝐾;W))) 

 

where ℱ(𝑇𝐾;W)  is the CNN function with parameters W, 

which is used to fabricate class scores, 𝒢 represents segmental 

consensus function, which combines the outputs of class 

hypothesis, ℋ  is the prediction function, which predicts the 

probability of each class. 

In the training stage, a number of RGB image were used 

equivalently to train K networks simultaneously. Before the 

final softmax layer, the trained features were processed by 

average pooling separately and then concatenated.  

L. Wang et al. selected Inception with Batch Normalization 

(BN-Inception) [15] as the main structure owing to its balance 

between accuracy and efficiency. Architecture of 5x5 

convolutional kernel is replaced by two 3x3 kernels in two 

layers. They used partial Batch Normalization (regularizing the 

mean and variance of batch normalization layer except first 

layer) and dropout after global pooling. 

III. SYSTEM  FRAMEWORK 

The proposed system employs CNN architecture and deep 

learning method for smoke action recognition. Fig.1 depicts the 

architecture of the proposed system. The system contains three 

stages, including pre-processing stage, training stage, and 

testing stage. 

 

(1) 
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Fig. 1   System architecture of smoking action detection 

A. Pre-processing Stage 

We employ OpenCV [16] to extract frames from all video 

clips with the frame rate 24 frames/second and set frame size 

to 340 x 256.  Data balancing technique is applied to the 

training data to make each class to have comparable amount of 

data. Most systems with good performance are analyzed based 

on randomly and uniformly distributed datasets. The size of the 

training set for each class is presumed to be equal. Otherwise, 

the neural network might be trained toward the large date set to 

minimize the training loss. In our system, HMDB51 dataset has 

70 smoking cases vs. 3500 no smoking cases (all other 50 

classes are counted as no smoking). The next section shows 

that the original unbalanced dataset results in low accuracy for 

smoking. To perform data balancing, only two cases from each 

non-smoking class are randomly chosen. Overall 100 cases are 

obtained as no smoking training set. In addition to the original 

70 cases for smoking action training, extra 43 cases from daily 

life smoking action are added. This makes the training set 

richer in video characteristics and more effective for 

representing all kinds of smoking actions.  

TSN is applied to segment the video clips. Data 

augmentation [4, 9, 10] is then employed to each frame by 

cutting four corners and the middle part, as well as horizontal 

flips, to obtain overall 10 new frames.  

 

B. Training Stage 

The training process is shown as in Fig. 2. We utilized TSN 

[10] architecture with the reference setting for smoke detection. 

We observe that temporal CNN exhibits little help in smoking 

action recognition, shown as in Table 1. This is probably due 

to slow or even still motion in smoking action. It leads to 

smoking optical flow trajectory is difficult to predict. Hence, 

only spatial CNN is utilized in the proposed system.   

We also use the inception model with batch normalization 

[15] and set segment K =3. The pre-train model follows the 

TSN HMDB51 model, whose pre-train model is ImageNet. We 

divide it to 2classes training. Finally, features of three networks 

are reduced by average pooling and merged by concatenation. 

 

 

Fig. 2  Training process  

C. Testing Stage 

Following two stream CNNS [9], we sample 25 RGB frames 

from each video. Through the spatial CNN model, each test 

data can be recognized as either smoking action or no smoking 

action. 

IV. EXPERIMENTAL RESULT 

A. Dataset and Implementation Details 

Three datasets, HMDB51 [17], smoking a cigarette of 

ActivityNet [18], and smoke of AVA dataset [19] were used to 

evaluate the performance. HMDB51 contains 6,766 clips of 51 

action classes, each containing at least 101 clips. Following the 

evaluation scheme from THUMOS13 challenge [20], we took 

three training/testing splits for evaluation. Smoking a cigarette 

of ActivityNet contains 53 videos, each video lasts at least 14 

seconds. Videos are captured smoking action in real life. 

Smoke of AVA dataset contains 32 movie clips we selected, 

each clip lasts 3 seconds long. In addition to smoking action, 

these clips also include other actions, such as multiple people 

talking, two people chatting, and one person moving package. 

The parameter setting for the training is as follows, mini 

batch size: 32, learning rate: 0.001, iteration number: 2500. 

Following TSN, the cross-entropy loss is used for evaluating 

the training performance.  

 

B. Results on HMDB51 2classes 

At first, the dataset with 3570 clips is divided into two sets, 

smoking 70 clips and no smoking 3500 clips, and used for 

training. The test dataset includes 30 clips smoking and 1500 

no smoking. Table 1 shows the smoking detection accuracy 

with different pre-trained models and different input networks. 

It shows that the benifit from temporal CNN is very limited. 

Even with different pre-train model, the accuracy can only be 

raised to 5.55%. Hence only the spatial CNN is used in this 

work. It also shows that the change of the pre-trained model 

from ImageNet to HMDB 51 can achieve better performance, 

increasing the accuracy from 17.77% to 33.33%. Hence 

Hmdb51 model is used in the following experiments.  
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Table 1   The accuracy rate based on different pre-trained 

model 

 

Table 2 shows the results by adding extra smoking datasets 

in training. It shows that the accuracy merely increases 1.11% 

by adding short time movie clips, AVA data. On the contrary, 

the accuracy can increase 18.34% by adding longer time daily 

life movies ActivityNet smoking. It is also better than the 

original 51-class training by 0.56%. However, adding both 

additional datasets for training can achieve 14.45% accuracy 

increase still lower than adding single data set ActivityNet 

smoking by 3.89%. It implies that the daily life movies include 

very important video characteristics that augment the training 

dataset. Hence,  ActivityNet smoking is added to the additional 

training set.  

Table 2   The accuracy rate of additional datasets 

Spatial 

training 

Smoking accuracy (%) 

51 

classes 

2 classes 

HMDB51 

+AVA 

data 

(32 ) 

+Activity 

smoking 

(43) 

+Activity 

smoking 

+AVA 

data 

split1 50.00 30.00 33.33 52.50 40.00 

split2 60.00 30.00 36.67 55.00 53.33 

split3 43.33 40.00 33.33 47.50 50.00 

average 51.11 33.33 34.44 51.67 47.78 

 

All Hmdb51 contents are human action related. Many of 

these actions are very similar and easy to be confused. One of 

the problems in the previous experiment is the unbalance of the 

training data in each class. This will train the system toward the 

major class, which is no smoking class, and pay less attention 

to the minor class, which is the smoking class. To solve this 

problem, the training set of no smoking class is reduced to 100 

clips while the smoking class maintains the original 70 clips 

plus ActivityNet smoking 43 clips. The ratio of the smoking to 

no smoking is 100: 113, which is more balanced. The test set 

is the original Hmdb51 test set, which includes 30 smoking and 

1500 no smoking clips.  

The smoking detection results include True Positive (TP), 

smoking and is detected, True Negative (TN), no smoking and 

is not detected, False Positive (FP), no smoking but is detected 

as smoking, and False Negative (FN), smoking but detected as 

no smoking. Table 3 shows that the accuracy of smoking for 

ActivityNet smoking dataset after data balancing can be as high 

as 100%. The other class, which has only 1/35 training data, 

can still reach 71.18% accuracy. This shows how important the 

data balancing is. The average accuracy is depicted in Fig. 3, 

the confusion matrix.    

Table 3   The detection results with data balancing 

Hmdb51 

data 

FN TP TN FP 

(%) 

split1 0 100 70.13 29.87 

split2 0 100 72.80 27.2 

split3 0 100 70.60 29.4 

average 0 100 71.18 28.82 

 

 

Fig. 3   Confusion matrix of HMDB51 2classes 

C. Results on additional test dataset 

In the above experiments, though the accuracy for smoking 

detection is extremely high, the training dataset is relatively 

small. This might raise a concern whether the accuracy can still 

be kept high for totally different test sets. Consequently, 

another dataset, AVA dataset including 32 clips, is used to test 

the model that has been trained. From Table 4, the accuracy for 

smoking detection can still be as high as 91.67%. This shows 

the resulting model can effectively detect the smoking action 

in all sorts of situations, including multi-person talking, other 

persons in the same frame performing no smoking action.  

 

 

Smoking accuracy(%) 

Temporal CNN Spatial CNN 

Pre-trained 

model 
ImageNet HMDB51 ImageNet HMDB51 

split1 0 6.66 10.00 30.00 

split2 0 0.00 26.66 30.00 

split3 0 10.00 16.66 40.00 

average 0 5.55 17.77 33.33 
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Table 4   Experimental results on AVA dataset 

AVA 

data 

FN TP 

(%) 

split1 3.125 96.875 

split2 9.375 90.625 

split3 12.500 87.500 

average 8.333 91.667 

 

V. CONCLUSIONS 

We have proposed a system that is specially designed for 

cigarette smoking action recognition based on deep learning 

technique. To compensate for the limited dataset of smoking 

actions, data balancing and data augmentation (adding 

ActivityNet smoking data) are shown to be extremely 

important to achieve high accuracy rate. In our experiment, 

spatial CNN is more powerful than temporal CNN in smoking 

action. As results, the proposed system can achieve 100% 

accuracy for HMDB51 smoking dataset, and 91.67% for 

irrelevant multi-class video clips.  
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