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Abstract—We investigate the deep learning approaches on the
melody extraction problem on symbolic music data. Specifically,
we compare two different approaches: the first one employs re-
current neural networks (RNN) by considering melody extraction
as a sequence prediction problem, while the second employs
fully convolutional networks (FCN) by considering it as a image
semantic segmentation problem. Both methods are tested against
a MIDI dataset with melody tracks acting as ground truth. A
more challenging case that the melodies are shifted by one octave
is also considered. Evaluation results show the advantage of the
semantic segmentation approach in terms of the accuracy.

I. INTRODUCTION

Melody is the essence of music.1 A music piece can
be efficiently summarized, and thereby uniquely identified
through the elements (e.g., theme, motif) in its melody, while
its accompaniment parts such as the chord progression are
secondary to the melody.2 Because of this, melody has long
been considered as an important subject in the research of
music information retrieval (MIR). For example, melody has
been used as a convenient query for searching in large-
scale music database, such as query-by-humming [1] with
audio input and snippet search [2], [3] with symbolic input.
Moreover, pitch contours in music are a general facility for
active music discovery [4].

To this end, a wide class of problems related to melody
extraction in polyphonic music data is of great importance.
Related MIR tasks include audio melody extraction [5]–[11],
audio note tracking [12]–[15], symbolic voice separation [16]–
[23], to name but a few. Although with development for
decades, there is still plenty of room for improvement in
melody extraction, probably because our perception of melody
is such an intricate cognition process that encompasses several
types of musical information (e.g., time, space, pitch, dynam-
ics, timbre, etc.) embedded in the data with different modalities
including audio and symbolic (e.g., MIDI), and governed by
various descriptive perceptual rules (e.g., temporal continuity,
pitch proximity, etc.) [24]. Illusion effects, such as Deutsch’s
scale illusion [25], and high-level cognition effects, such as
expectancy/attention [26], and dynamic pattern structures [27]

1Quoted from the famous words of Wolfgang Amadeus Mozart: “Melody
is the essence of music. I compare a good melodist to a fine racer, and
counterpointists to hack post-horses; therefore be advised, let well alone and
remember the old Italian proverb: Who knows most, knows least.”

2Unless otherwise specified, the musical texture we discuss in this paper is
the homophonic music, i.e., the music composed of one predominant melody
and accompaniment.

further complicate the process of melody perception. As a
result, when discussing the difference between melody and
accompaniment (or harmony) in music, we usually retreat
to use metaphoric rather than exact descriptions, such as
foreground and background, surface and structure, and others.

Most of the studies on melody extraction in these years have
been focusing on audio melody extraction.In this problem,
solutions typically takes the pitch range, loudness, timbre
and interpretation factors (e.g., portamento, vibrato) of the
estimated pitch contours the system can not only rely on pitch
but also on timbre and interpretation factors (e.g., vibrato),
which can be more related to the melody. On the other hand,
less efforts can be paid on symbolic-level melody extraction,
the problem that aims at extracting melodies from the symbolic
data, given only the pitch structure of music but without any
audio-level cues. Such a task is important as doing this can
simulate the high-level cognitive processes of melody in our
brain and will mark an important step toward music language
understanding. Most of the previous studies on symbolic-level
melody extraction were based on hand-crafted rules, which
might be limited in capturing musically-interesting ideas.
Learning-based approaches to symbolic melody extraction are
still rarely investigated, except some of the recent works using
probabilistic modeling [16], [17] or neural networks [18].

With the great success of deep learning in processing high-
level semantics for pattern recognition in recent years, we
revisit the problem of symbolic melody extraction in this pa-
per. In particular, we consider advanced deep learning models
from two different perspectives to tackle this problem. The first
model is a revision from the DeepBach model [28], a state-
of-the-art music generation model built with long-short-term-
memory recurrent neural networks (LSTM-RNN). The second
model, constructed with fully convolution networks (FCN), is
based on DeepLabV3 and its improved version, DeepLabV3+
[29], [30], which are the state-of-the-art models for semantic
segmentation of images. That means, the first model solves
melody extraction from the perspective of sequence prediction,
while the second model solves it from the perspective of
semantic segmentation. We will give a systematic investigation
on both perspectives and compare them according to the
experiment results. Source code is available on-line3.

3https://github.com/s603122001/Vocal-Melody-Extraction
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II. RELATED WORK

In symbolic musical data processing, the melody extraction
task can be regarded as a subtask of the general voice separa-
tion task, which deals with not the separation of homophonic
melody but also the separation of multiple concurrent melodies
in the polyphonic music. Based on the concept of voice
leading in the literature [24]. Most of the proposed methods
in this direction apply the perceptual principles established
in psychological studies, such as the principles of temporal
continuity and pitch proximity [24], to specify a perceptually
independent musical lines . Karydis et al. proposed the Voice
Integration/Segregation Algorithm (VISA), which considers
voice assignment as a order-aware bipartite matching problem
[19] and is the revised in the later works [20], [21]. Chew and
Wu proposed the concept of contig, the short segment where
the number of played notes inside a contig is constant. The
voice separation process includes the extraction of the contigs,
and then reconnect the contigs according to similar perceptual
noises [31]. The contig approach has gained attention in recent
years; several improvements have been proposed [22], [23].
The above-mentioned methods, however, relies on a number
of hand-crafted criteria that might rule out many musically-
interesting things. The order of how to process these criteria
also affect the result and therefore make it hard to be repeated.
There were also less source codes released.

Some recent studies have come to the use data-driven
methods that are also compatible with the perceptual principles
while being more flexible. Temperley proposed a Bayesian
model that based on the principles that 1) melodies tend to
remain within a narrow pitch range; 2) note-to-note intervals
within a melody tend to be small; and 3) notes tend to conform
to a distribution (or key profile) that depends on the key
[16]. Similar approach can also be seen in HMM-based voice
separation [17]. Gray and Bunescu [18] proposed a neural
network based method for voice separation of both polyphonic
and homophonic music.

Most of the above-mentioned studies considered the sepa-
ration multiple voices/streams in symbolic data. In this paper,
we consider the problem of predominant melody extraction in
homophonic music. This is a special case in voice separation.
In other words, we assume only one predominant melody in
this special case, and exclude the case of polyphony (e.g.,
Fugue). We consider this case because this is more useful in
analyzing the music people usually listen to nowadays.

In audio music processing, the problem of melody extrac-
tion from polyphonic music has been discussed extensively
[5]–[11]. Most of these methods have focused on acoustic
modeling that incorporate acoustic features, while the language
model is less investigated.

III. METHODS

A. Semantic segmentation

We adopt DeepLabV3 and its successor, DeepLabV3+ [29],
[30], one of the state-of-the-art performance in image semantic
segmentation tasks, as the core of the proposed semantic

(a) The FCN-based model for semantic segmentation.

(b) The LSTM-based model for sequence prediction.

Fig. 1: The models adopted for symbolic melody extraction.

segmentation model for melody recognition. Since this model
has been applied in an related work on audio melody extraction
[32], we mainly follow the settings in [32] for the semantic
segmentation model used in this work. The model is a FCNN
with an encoder-decoder architecture, where the encoder is
implemented by a ResNet [33] followed by an dilated spatial
pyramid pooling process, and the decoder is implemented by
the reverse of the encoder, as shown in Fig. 1a. The major
characteristic of DeepLabV3 is the dilated convolution blocks
as a generalized version of the standard convolution:

y[i] =
∑
k

x[i+ r · k]w[k] (1)

where y and x denotes the input and the output feature
maps, respectively, w is the convolution filter, and i indicates
the location of the feature maps. The number r, named the
dilated rate, determines the stride with which the input are
sampled. For example, when r = 1, (1) stands for the standard
convolution. To capture the context in different ranges, one
can apply dilated convolution with different values of r on
the same input feature map in parallel; this process is called
the Spatial Pyramid Pooling (ASPP) [29], [30]. The outputs
of these parallel convolution operations are then concatenated
to provide information collected from various scales.

There is a problem of data imbalance as a melody object
(i.e., positive data) typically occupies only a small portion of
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the input piano roll in comparison to the accompaniment and
silence part (i.e., negative data). To address this problem, we
adopt the focal loss [34] as the loss function for the model:

FL(pt) = −αt(1− pt)γ log(pt) , (2)

where pt denotes the model’s estimated probability for an input
to be classified to class t , αt ∈ [0, 1] is a weighting factor
for the imbalanced classes which balances the importance of
positive and negative examples and the term (1 − pt)γ acts
as a modulating factor with γ controlling the rate at which
easy examples are down-weighted. Following [34], we set
αt = 0.25, γ = 2 in this work. Besides, to recover the
melody in fine resolution in the decoding process, we replace
the simple decoder module in DeepLabV3 with an inverted
version of the encoder module for fine-grained outputs, and
the up-sampling process is replaced with stacks of convolution
and transpose convolution layers. Also, better performance
is achieved by introducing the U-net [35] structure that the
output from each block of the encoder is concatenated to the
corresponding block of the decoder. Implementation details
can be found in [32].

B. Recurrent neural networks

We utilize the Deepbach model [28] to develop another
model for melody extraction. In this model, the two-sided
LSTM structure, which can simultaneously access the past
and future information of interest, is well suited for polyphony
generation. Here we utilize the model for melody extraction,
by treating it as a sequence prediction problem.

The Deepbach model uses four identical networks cooper-
ating together to model Bach’s four part chorales with each
network modeling one of the four voices:

max
θi

∑
j

log pi
(
Vij |V\ij ,M, θi

)
, for i ∈ [1, 4] , (3)

where Vij is the pitch number for voice i at time j, M is
the meta information such as beats and the fermata symbol,
and θi is the latent parameters of the model for voice i. Each
network in Deepbach outputs the activated pitch number for
the corresponding voice at a time.

To extract melody, we take only one sub-network from
Deepbach and use only piano roll as the data representation.
This allows us to model multiple concurrent notes in homo-
phonic music. Also, the current part of the input is modified
to the timestep which we want to predict the melody on piano
roll. The diagram of the model is showed in Fig. 1b.

C. Training and Inference

Instead of using all the data in the dataset during training,
we randomly select a portion of training samples from the
dataset for each training epoch, and set the number of samples
to be a constant. This is an alternative way for efficient
training, since training all data for every epoch is time-
consuming. Because of the different topologies of the two
models, their allowed batch sizes during training are also
different. Therefore, in our experiments, for the training of the

segmentation model, 60k samples are used for every epoch,
while for the LSTM model, 768k samples are used.

To extract melody from a given score using the segmentation
model, a window based analyzing method is used. The size of
the window equals the input dimension of the segmentation
model, and the hop size is one. The score will first be padded
with 128 zeros, which equals the width of window at the
beginning and the end, so each time step can be processed
once in every location in the analysis window. As the window
slides over the piano roll, all the results are superposed so that
at the end we will have a time-frequency representation for
the salience of melody. After the sliding process, we pick the
maximum value in each column and zero out all other values.
The remaining nonzero entities with values smaller than the
average of each column’s maximum are then set to zero.

To perform melody extraction on a given score using the
LSTM model, we use the same method as the inference of
segmentation model that a fixed dimension analysis window
will slide through the padded score. The difference is that the
predictions are concatenated to get the result for the whole
score because the LSTM model predict one time step at a
time. At last, the same zero out process will be applied in
order to get the final result.

D. Implementation

Both models are implemented using the Keras library with
tensorflow as the back end, and optimized using ADAM.
Before being processed, the pitch dimension of the input for
segmentation model is padded with zeros from 88 to 128 for
computational convenience and for the LSTM model, it is
augmented from 88 to 90 which presents the start and end
symbol respectively.

For the segmentation model, the input dimension is 128
timesteps in width and 128 in length which indicates the pitch.
As shown Fig.1a, the input feature will first be processed by
a 29-layer Resnet encoder. Then, the dense features output
which is 16 times smaller than the original will be passed
to the ASPP unit. Finally, a decoder which is composed
of transpose convolutional layers with strides equal (2, 2)
will up-sample the dense features to its original shape. The
final output dimension will be (128, 128, 2), with the first
channel indicating the presence melody and the other is
for non-melody. The superposition in the inference process
is performed on the first channel. Batch normalizations are
applied after each activations, and a dropout rate of 30% is
added after the batch normalizations.

For the LSTM model, the past and future part of the
input score each contains 128 timesteps. Both parts are first
separated, such that each unit of the input data contains
a fragment of four time steps which is actually a 90-by-4
matrix, and there are no overlaps between these fragments.
Every fragment is first flattened, and then a shared fully
connected layer will reduct its dimension into a 90-D vector.
By doing so, larger context information can be considered
with a smaller model capacity. Both LSTM networks take a
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TABLE I: Experiment results (in %) on the American Folk test set containing songs from various sub-genres.

Training data Method w/o melody shift in testing w/i melody shift in testing
OA RPA RCA VR VFA OA RPA RCA VR VFA

w/o melody shift in training Semantic segmentation 79.26 79.14 81.2 86.57 17.21 61.89 54.71 68.56 82.28 19.23
LSTM RNN 80.36 79.27 81.56 86.94 17.26 58.54 46.73 62.05 79.18 15.89

w/i melody shift in training Semantic segmentation 78.67 76.75 79.30 84.18 14.03 76.60 73.79 76.60 84.25 12.92
LSTM RNN 75.80 72.56 76.18 81.18 16.01 73.03 68.47 72.01 80.14 13.67
Baseline (max pitch) 70.00 82.52 91.40 100 53.81 48.36 52.95 75.56 100 55.55

(a) (b)

Fig. 2: Melody extraction result. Top: the ground truth piano rolls, where the melodies are in black and the accompaniments
are in cyan. Middle: extracted melodies using the semantic segmentation model. Bottom: extracted melodies using the RNN
model. In the middle and bottom sub-figures, true positive detections are in red, false negative detections are in black, and
false positive detections are in cyan.

series of embedded features with 32 time steps, i.e., a 90-
by-32 matrix, as the input. Both networks contain 3 LSTM
layers, each having 90 hidden units. The outputs of the two
networks are concatenated with the current part of the input
score and then transformed to an 88-D vector with another
fully-connected layer.

IV. EXPERIMENT

A. Data

A MIDI corpus contains 600 American folks with a melody
track is used as the training data for the symbolic model
(see https://goo.gl/aPgzrW; last retrieved: 2018/09/08). All the
pieces are first parsed to piano rolls. A timestep in the piano
roll is a 32nd note. In the training process, we perform data
augmentation, by pitch-shifting each song in the dataset up
and down by at most 6 semitones to cover all possible keys.
In addition, half of the pieces in the dataset are modified
by shifting the melody by one octave down. As a result, the
training dataset comprise 7,800 pieces.

Besides using the ground truth dataset, we further consider
a more challenging case: shifting down the melody by one oc-
tave to make the melody and accompaniment are interleaved.
In this case, most of the melody parts lie within the pitch
region of the accompaniment, making the it more difficult to
model the true melody contour. We assume that if the training
data contains data which melodies are shifted down, the model
should be able to better predict such a challenging case, and
make the model able to simulate human perception that the
melody is robust to octave shifting. Therefore, we consider the
cases that the training or testing data contain shifted melody or

not. As a result, we experiment on four different experimental
settings by consider whether the melody is shifted in either
training or testing data, as shown in Table I.

We also compare the two models with a baseline that naively
regards the highest note at every time stamp as the melody.
This is a reasonable baseline because accompaniments tend
to be arranged in the low-pitch region for this dataset that
contains mainly folk music. In the case that the melody is
shifted, this method becomes no more applicable.

B. Results

Table I lists the overall accuracy (OA), raw pitch accuracy
(RPA), raw chroma accuracy (RCA), voice recall (VR) and
voice false alarm (VFA) of the proposed methods on the testing
dataset. All data is computed from mir eval [36].

The left-hand part of Table I shows that when neither
the training nor the testing data contains melody shifting,
LSTM RNN achieves slightly better performance than se-
mantic segmentation; it achieves an OA of 80.36%, 1.1%
higher than the OA of semantic segmentation. Interestingly,
when the training data contain shifted melodies, the resulting
performance degrades for both methods, but only the VFA
values are improved. This implies that the modeling of melody
objects is still highly related to its interleaved notes for both
methods. However, perhaps such interleaved contents provide
better cue for the model to classify the time intervals without
melodies, i.e., no interleaved melody and accompaniment.

The right-hand part of the results in Table I shows that when
the testing data contain shifted melody, the performance of
both models degrade a lot. In particular, the RPA is much lower
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than the RCA, indicating that the number of octave errors
increases a lot. This implies that both models are still limited
in modeling the dynamic pattern of melody independent from
the structure. When the training data contain shifted melodies,
the performance values of both models are improved a lot.
Comparing the two models, we observe that semantic segmen-
tation performs consistently better than LSTM RNN in this
case. More specifically, the OA of the semantic segmentation
model is better than the one of the LSTM RNN model by
around 3%. Therefor when the melody and the accompaniment
are interleaved, semantic segmentation appears to be a better
method. Such higher accuracies might be caused by the large
model capacity and high flexibility of the FCN structure in
capturing contextual information.

Finally, Fig. 2 shows two examples with melody extraction
results using the two models. Note that the second example
is a challenging that the melody is shifted down by one
octave. Results show that both models are capable in resolving
the case that the melody is shifted. In general, the semantic
segmentation model performs better than the LSTM RNN
model in capturing detailed behaviors of the melody contour.

V. CONCLUSIONS

We have investigated two deep learning frameworks, FCN-
based semantic segmentation and RNN-based sequence pre-
diction, on the machine-based symbolic melody recognition
problem. Results positively show the high performance of both
frameworks in modeling melody when the accompaniment part
is interleaved with. When the pitch difference between melody
and accompaniment is large, the RNN-based method performs
better; when the pitch difference is small, the FCN-based
method performs better. The results also suggest future work
on improving model robustness to interleaved accompaniment,
and on the separation of multiple voices or tracks.
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