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Abstract—In this paper, we discuss a method for a music per-
formance detail analysis using multiresolution analysis allowing
simultaneous estimation of pitch, precise onset, duration and
intensity from polyphonic audio. The motivation is to obtain
information that is detailed enough to develop a performance
model of a human player. Characteristics of human performance
can be observed as local and global tempo changes, sound
intensity (volume or velocity in a MIDI), and articulations like
slur and staccato. Estimation and extraction of such features from
a musical audio signal in detail is useful for music information
retrieval systems, automatic transcription systems, as well as
automatic performance systems to train the relationship between
music features and player performance. Our proposed system
is based on non-negative matrix factorization (NMF) using
hierarchical Bayesian inference, which is modeling harmonic and
nonharmonic structures, note durations, intensities, and onset
information stochastically. The estimation process comprises two
steps. In the first step, variational Bayesian inference and a
Gaussian mixture model is used to roughly estimate pitch onset,
intensity and duration. These values are used as a prior for the
second more detailed step, in which time resolution is doubled
and the estimation is repeated to refine the results. The evaluation
results show that the our proposed multiresolution Bayesian
model can estimate more precise onset times and durations than
our non-multiresolution Bayesian model.

I. INTRODUCTION

Human music performances are influenced by a lot of
factors. For example, a musician adds various expressive
nuances in his performance, for example by varying the tempo
or dynamics while performing. In addition to the musical
intention of the composer contained in the sheet music, the
interpretation of this intention by the performer, as well as
the performer’s own traits influence the resulting expressive
performance. Additionally, in case of ensembles with multiple
instruments, interactions taking into consideration each other’s
performance intention and instrument characteristics become
important. As a result, the performances we usually listen to
can vary significantly depending on the performers.

We call the mathematical consideration of various factors
concerning human performance ”performance engineering” in
this research. Research on performance engineering has been
done from various viewpoints such as automatic accompa-
niment, session systems, and performance expression. This
paper is concerned with said performance expression, with
which a human actually performs a musical score. Human
performances are generally rhythmical and expressive, and not
monotonous reproductions of the score as it is. The reason
is that a human performer can interpret the intention of a

composer from a score and vary the pace of the performance.
In order to make a performance interesting and emotional,
musicians usually use a multitude of dynamic and rhythmic
details. For example, when a human performer plays a chord,
the actual timing of the keystrokes might not be simultaneous
but scattered a little. As another example, performers often
emphasize the melody of a piece by slightly shifting the timing
of melody notes or playing them stronger in order make it
stand out. From the point of view of the listener, the deviations
from the exact musical score as well as audible differences
between different performers are perceived as fluctuations of
onset times and durations based on the changes of global and
local tempo (including articulations like slur and staccato), as
well as changes of dynamics.

To properly analyze such performance properties, a high
resolution of time and note intensity. We could obtain per-
formance information from MIDI-format data [1] easily, but
we would need to use a special instrument like a MIDI
piano to obtain such data. Therefore, relying on MIDI data
would strongly limit the amount of data we can use. However,
audio recordings of human performances are available in large
numbers. Thus, in order to increase the amount of data usable
for performance analysis, our aim is to estimate pitches, onset
times, durations and intensities of all notes from a musical
audio signal. Such analysis of audio data is in the following
referred to as “performance detail analysis”.

In recent years, multipitch analysis has been approached
with various methods [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Especially,
non-negative matrix factorization (NMF) [12] was frequently
used for estimation of pitches, since NMF suits music infor-
mation quite well due to spectra being non-negative and the
number of pitches being limited [13, 14, 15, 16, 17, 18, 19, 20].
NMF is the method of decomposing a spectrogram into a
product of two lower rank matrices, one of which consists of
basis vectors expressing a fundamental frequency distribution
with overtones of every pitch, while the other one contains
activations based on power envelopes of the corresponding
basis vectors. Although incorporating acoustic models can im-
prove estimation accuracy, the principle of uncertainty between
frequency resolution and time resolution limiting the short-
time Fourier transform (STFT) makes the precise estimation
difficult. Especially for performance detail analysis, high time
resolution is needed to extract human characteristics. As a
method for tackling the problem of the uncertainty principle,
the concurrent NMF (CNMF) was proposed [21]. CNMF
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Fig. 1. Our proposed model for performance detail analysis using NMF. This
model consists of an acoustic model and a score model.

is the method of using two spectrograms (high frequency
resolution and high time resolution), while imposing con-
straints considering shared frequency and time bins of both
spectrograms. Although this method estimates the pitch and
precise onset successfully, detailed durations and intensities
cannot be obtained.

In this paper, we propose a method for multiresolution
analysis using NMF based on hierarchical Bayesian inference
for detailed analysis. Our proposed method uses a model
of a harmonic structure for basis matrices and approximates
activation distributions of pitches with a Gaussian mixture
model (GMM) as proposed in [11]. By modeling onset time
information stochastically, we can utilize score information
explicitly. Fig. 1 shows our basic idea. In our proposed
model, the generative model of a spectrogram consists of two
models; an acoustic model based on NMF and a score model
that accounts for tempo differences of spectrograms. In other
words, we need to estimate the parameters which maximize
the likelihood of an observed spectrogram Y . Furthermore, we
can obtain the results of analysis with high frequency and high
time resolution by utilizing onset time information estimated
by initial analysis with different resolution (high frequency
and low time resolution).

II. GENERATIVE MODEL OF MUSICAL SPECTROGRAMS

A. Problem formulation

The ultimate purpose of our system is to automatically
acquire the deviation information of the human performance
data relative to the music score in order to automatically
turn expressionless music (e.g. digitized sheet music) into
expressive performances. In other words, the aim is to estimate
musical features (onset time, volume, sound length) from
audio data of a human performance with high temporal resolu-
tion. However, in contrast to conventional multi-pitch analysis,
the performed musical score is known to the algorithm. In
performance detail analysis with high temporal resolution, the
low frequency resolution caused by the uncertainty principle

can be a bottleneck. To solve this problem, we propose
the following 3-step analysis that utilizes score information
explicitly .

1) Estimation of the onset time of each note based on score
information.

2) “Coarse” estimation of onset times using the estimated
onset times from step 1 as a prior.

3) “Finer” estimation of onset times using the estimated
onset times from step 2.

B. Model hypothesis

In this paper, we assume the following properties of musical
spectrograms, note spectrums, and note energies:

1) The frequency of every pitch is stationary, and shifts in
power distribution only occur due to different durations
and intensities.

2) Music consists of combinations of single tones defined
by pitch and duration.

3) A spectrum of a single tone comprises a fundamental
frequency distribution containing its overtones, and has
a nonharmonic component.

4) The frequency distribution of the nonharmonic compo-
nent is smooth and continuous.

5) The development of note magnitudes in time from onset
to offset time is smooth and continuous.

C. Musical spectrogram model

A musical spectrogram is observed as a set of overlapping
performed single tones. In the ideal case, if every note,
for instance 88 notes in case of a piano, would correspond
one-to-one to a unique spectrum, which scales linearly with
magnitude, and a spectrogram of a piano performance would
correspond to a sum of such note spectra, the spectrogram
could be decomposed into note spectra and their magnitudes.
We approximate this decomposition using NMF to factorize
a spectrogram Y ∈ RW×T into the lower rank basis matrix
H ∈ RW×K and activation matrix U ∈ RK×T as follows:

Y ≈HU . (1)

To compute the low rank matrices, a distance metric is
required. In our model, we use the generalized Kullback-
Leibler divergence (I-divergence), which can be formulated
as follows:

arg min
H,U

DKL[Y ||HU ],

s.t. ∀k Hw,k > 0, Uk,t > 0, (2)

which is equivalent to assuming a generative model based on
the Poisson distribution:

Yw,t ∼ Po(Yw,t|
∑
k

Hw,kUk,t). (3)
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Fig. 2. An example of approximation of template basis using a GMM in
the case of a recording of the note C4 played on a piano using constant-Q
transform (taken from the RWC Music Database [22]).

D. Basis matrix: Harmonic component model

The basis vectors containing the respective note’s har-
monic components consist of a fundamental frequency and
the overtone frequency distribution. As an approximation of
the distribution we define the common harmonic structure
pattern h(f), assuming that overtone magnitudes decrease with
distance from the fundamental frequency according to the
following formula:

h(fn)

h(f0)
= (n+ 1)−α h(f) = 0 if f /∈ {f0, f1 . . . , fN} (4)

where fn is the frequency of the n-th overtone, and α is an
attenuation coefficient. We set the parameters to N = 8 and
α = 1.5 for this paper. Fig. 2 illustrates the approximation of
the harmonic structure. It displays the spectrum of a ‘C4’ note
played on the piano, which can be approximated using a GMM
as shown in the figure. Using relative overtone magnitudes as
mixing coefficients γk,m (m-th overtone of the k-th pitch) of
the GMM, we obtain the template basis vector H̄w,k of the
corresponding note as

H̄w,k =

8∑
m=1

γk,m√
2πσ

exp

(
− (log(w)− log(mwk))2

2σ2

)
s.t.

∑
m

γk,m = 1, (5)

where wk denotes the fundamental frequency of the k-th pitch.
The variance σ was set to 0.1 for this paper.

Due to the relation between the conjugate prior distribution
of the Poisson distribution and the gamma distribution, the
prior distribution can be expressed as

Hw,k ∼ Ga(Hw,k|αw,k, βw,k). (6)

To suppress frequencies other than that of the overtones in a
note’s basis vector, we encourange sparsity of the basis matrix
Hw,k by using the template basis H̄w,k as mode of the Gamma
distribution,

Hw,k ∼ Ga(Hw,k|(bHw,k)−1H̄w,k + 1, bHw,k). (7)

The mode H̄w,k can be used as the common harmonic
structure pattern in (4) and (5).

E. Basis matrix: Nonharmonic component model

The nonharmonic component is mainly required to absorb
the harmonic noise in a spectrogram. As the nonharmonic
component has a smooth structure in the frequency dimension,
the basis vector corresponding to the nonharmonic component
Hw,K+1 is defined using the inverse gamma Markov chain
(IGMC) [23] as

Hw,K+1 ∼ IG(Hw,K+1|αgH ,
gHw
αgH

)

gHw ∼ IG(gHw |αgH ,
Hw−1,K+1

αgH
), (8)

where αgH is a hyperparameter, and gHw are latent auxiliary
variables to ensure positive correlation between Hw−1,K+1

and Hw,K+1. Therefore, the full conditionals are

Hw,K+1 ∼ IG

(
Hw,K+1|2αgH ,

1

αgH

(
1

gHw
+

1

gHw+1

)−1)

gHw ∼ IG

(
gHw |2αgH ,

1

αgH

(
1

Hw,K+1
+

1

Hw−1,K+1

)−1)
.

(9)

F. Activation matrix: Single tone model

We assume that a musical spectrogram can be expressed as a
combination of single tones. Denoting the index of an observed
note as r = {1, · · · , R,R+1} (r = R+1 for the nonharmonic
component) and frame numbers as t = {1, · · · , T}, a single
tone’s magnitude Vr,t can be expressed as

Uk,t =
R∑
r=1

δκr,kVr,t

δκr,k =

{
1 if κr = k,

0 if κr 6= k
(10)

where κr is the index of the basis vector of the corresponding
note. Assuming that a single tone’s magnitude Vr,t can be
described by its time-evolution νr,t, which is modeled by a
GMM, in combination with its energy energy vr, Vr,t can be
rewritten as follows:

Vr,t = vrνr,t

= vr

M∑
m=1

πr,m
1√
2πφ

exp

(
− (t− τr − (m− 1)φ)2

2φ2

)
,

s.t.
M∑
m=1

πr,m = 1, (11)

where M is the number of mixtures, φ denotes the standard
deviation, πr,m is the mixing coefficient of the GMM, and τr
is the estimated onset time. This model fulfills the constraint of
continuity of the power envelope. Furthermore, nonparametric
Bayesian inference can estimate pitch duration from observed
data. By applying the stick-breaking process (SBP) [24], which
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is known as one of construction methods of a Dirichlet process
(DP) [25], πr,m is formulated as

πr,m = Lr,m

m−1∏
l=1

(1− Lr,l)

Lr,m ∼ Beta(Lr,m|1, βLr,m), (12)

where βLr,m is a hyperparameter.
Furthermore, the activation UK+1,t, corresponding to the

nonharmonic component Hw,K+1, can also be modeled by
IGMC like Hw,K+1.

VR+1,t = UK+1,t

UK+1,t ∼ IG

(
UK+1,t|2αgU ,

1

αgU

(
1

gUt
+

1

gUt+1

)−1)

gUt ∼ IG

(
gUt |2αgU ,

1

αgU

(
1

UK+1,t
+

1

UK+1,t−1

)−1)
.

(13)

Therefore, the activation Uk,t can be rewritten using the
single tone model and the nonharmonic component UK+1,t

as follows.

Ûk,t =


∑M
m=1 vrπr,m

1√
2πφ

exp
(
− (t−τr−(m−1)φ)2

2φ2

)
(k 6= R+ 1)∑M

m=1
1
MUK+1,t (k = R+ 1).

.

(14)

G. Activation matrix: Single tone’s energy model

As the number of notes observed in a score is limited,
magnitude distribution of notes is expected to be sparse, such
that the minimum number of single tones have a magnitude
larger than 0. A gamma process can be used to induce sparsity
for the single tone magnitude vr,

vr ∼
R∏
r=1

Ga(vr|avr , bvr), (15)

where avr and bvr are hyperparameters. This can also be utilized
to search for performance mistakes and estimation error in the
respective previous step of the multiresolution analysis.

H. Activation matrix: Onset time model

Although note onset times in human performances generally
deviate from that of score-based performances (onset times
according to the score) even if the performer tries to exactly
follow the score, approximate time information estimated
from score onset times can be used as reference information
in the first step of the multiresolution analysis. We encode
this information in piano-roll format using binary variables
Sk,t, which are 1 if the k-th note is estimated to sound
at time t. Using this approximate information in the form
of r-th single tone’s onset times tSκr,t0r estimated using the
score information for DP matching (or estimated score from

Fig. 3. Graphical model of our proposed method.

previous multiresolution analysis step), the final onset time τr
estimation is computed as follows.

τr ∼ N (τr|t
Sκr,t0
r , σ2

τ ). (16)

where the variance σ2
τ is a hyperparameter.

I. Final formulation of the generative model

The formula of the standard NMF approximation in (3) can
be rewritten using (10) and (14).

Yw,t ∼ Po(Yw,t|
∑
r,m

Hw,κr Ûκr,t). (17)

Fig. 3 illustrates the graphical model of our proposed
method.

III. APPROACH USING VARIATIONAL BAYESIAN
INFERENCE

A. Variational Bayesian inference

Given the set of parameters as Θ and the set of hyperpa-
rameters as Φ, the posterior distribution of parameters based
on Section 2. and Fig. 1 can be formulated as

p(H1:K ,HK+1,UK+1,v, τ ,L|Y ,Φ)

∝ p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(H1:K |bH , H̄)p(HK+1|gH , αgH )

· p(UK+1|gU , αgU )p(v|av, bv)
· p(τ |S, στ )p(L|βL)

= p(Y ,Θ|Φ)

(18)

In variational Bayesian inference, the aim is the maximization
of the marginal likelihood. The lower bound of this marginal
likelihood is derived using Jensen’s inequality as follows.

log

∫
Θ

p(Y ,Θ|Φ)dΘ ≥
∫
Θ

log q(Θ)
p(Y ,Θ|Φ)

q(Θ)
dΘ

≡ B(q), (19)
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where q(Θ) is called variational posterior distribution. In this
case, the equality condition is

p(Y ,Θ|Φ)

q(Θ)
= const. (20)

So that,
q(Θ) = p(Θ|Y ,Φ). (21)

Therefore, we minimize the difference between p(Θ|Y ,Φ)
and q(Θ), which is equivalent to maximizing the variational
lower bound B(q) according to

DKL[q(Θ)||p(Θ|Y ,Φ)] = −B(q) + log p(Y |Φ). (22)

In variational Bayesian inference, the following mean field
approximation is then used to replace the posterior distribution
in order to facilitate the following derivations.

q(Θ) =
∏
i

q(θi) (23)

As a result, the variational lower bound can be formulated as
follows.

B(q) = Eq(Θ)[log p(Y ,Θ|Φ)]− Eq(Θ)[log q(Θ)]

∝
∫
θj

q(θj)
(
Eq(Θ\j)[log p(Y ,Θ|Φ)]− log q(θj)

)
dθj ,

(24)

where Θ\j denotes the set of parameters excluding the j-th
parameter θj . (24) can be regarded as negative KL-divergence
between q(θj) and Eq(Θ\j)[log p(Y ,Θ|Φ)].

Consequently, the update equation can be formulated as
follows.

q(θj) ∝ exp
(
Eq(Θ\j)[log p(Y ,Θ|Φ)]

)
. (25)

B. The lower bound of the Poisson distribution

The expectation value of the logarithm likelihood of the
Poisson distribution logPo(Yw,t|

∑
r,mHw,κr Ûκr,t) cannot

be derived analytically. Jensen’s inequality can be utilized for
this expectation value similarly to (19).

Eq

[
logPo(Yw,t|

∑
r,m

Hw,κr Ûκr,t)

]

= Eq

[
Yw,t log

∑
r,m

Hw,κr Ûκr,t −
∑
r,m

Hw,κr Ûκr,t

]

≥ Yw,t
∑
r,m

Cr,m,w,tEq

[
log

Hw,κr Ûκr,t
Cr,m,w,t

]
−
∑
r,m

Eq
[
Hw,κr Ûκr,t

]
,

s.t
∑
r,m

Cr,m,w,t = 1.

(26)

The auxiliary variables Cr,m,w,t are then derived by

Cr,m,w,t ∝ exp(Eq[logHw,κr Ûκr,t]). (27)

Simultaneously, the logarithm likelihood of the Poisson distri-
bution can be used as

Eq

[
logPo(Yw,t|

∑
r,m

Hw,κr Ûκr,t)

]
∝
∑
r,m

(
Yw,tCr,m,w,tEq

[
logHw,κr Ûκr,t

]
−Eq

[
logHw,κr Ûκr,t

])
.

(28)

This formula can maintain the conjugate structure with the
corresponding prior distribution.

C. Variational posterior distribution

The variational posterior distribution can be expressed as
follows according to the conjugate prior distributions in this
model.

q(H1:K) =
∏
w,k

Ga(Hw,k|âHw,k, b̂Hw,k)

q(HK+1) =
∏
w

GIG(Hw,K+1|âNw , b̂Nw , p̂Nw )

q(UK+1) =
∏
t

GIG(UK+1,t|âNt , b̂Nt , p̂Nt )

q(v) =
∏
r

Ga(vr|âvr , b̂vr)

q(τ ) =
∏
r

N (τr|t̂
Sκr ,t0
r , σ̂2

τ )

q(L) =
∏
r,m

Beta(α̂r,m, β̂r,m), (29)

where GIG(·) denotes the generalized inverse Gaussian dis-
tribution. In the following, the expectation Eq[·] is replaced
with 〈·〉. The expectation values based on above distributions,
which are used in this paper, are derived as follows:

〈Hw,k〉 = âHw,k b̂
H
w,k

〈logHw,k〉 = ψ(âHw,k) + log b̂Hw,k

〈Hw,K+1〉 =

√
b̂NwKp̂Nw+1(

√
âNw b̂

N
w )√

âNwKp̂Nw
(

√
âNw b̂

N
w )

〈logHw,K+1〉 = log

√
b̂Nw√
âNw

+
∂

∂p̂Nw
logKp̂Nw

(

√
âNw b̂

N
w )

〈UK+1,t〉 =

√
b̂Nt Kp̂Nt +1(

√
âNt b̂

N
t )√

âNt Kp̂Nt
(

√
âNt b̂

N
t )

〈logUK+1,t〉 = log

√
b̂Nt√
âNt

+
∂

∂p̂Nt
logKp̂Nt

(

√
âNt b̂

N
t )

〈vr〉 = âvr b̂
v
r

〈log vr〉 = ψ(âvr) + log b̂vr

〈τr〉 = t̂
Sκr ,t0
r

〈τ2r 〉 = (t̂
Sκr ,t0
r )2 + σ̂2

τ
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〈logLr,m〉 = ψ(α̂r,m)− ψ(α̂r,m + β̂r,m)

〈log(1− Lr,m)〉 = ψ(β̂r,m)− ψ(α̂r,m + β̂r,m), (30)

where Kp is a modified Bessel function of the second kind,
and ψ(·) denotes a digamma function.

D. Derivation of Cr,m,w,t
The auxiliary variables Cr,m,w,t are given in (27). In the

case of r ∈ R,

log Cr,m,w,t

∝
〈

logHw,κr Ûκr,t

〉
= δκr,k〈logHw,k〉+ 〈log vr〉

+ 〈logLr,m〉+
l−1∑
l=1

(log〈1− Lr,m〉)

− 1

2
log 2πφ2 − 1

2φ2
〈τ2r 〉

+
1

φ2
(t− (m− 1)φ)〈τr〉

− 1

2φ2
(t− (m− 1)φ)2.

(31)

On the other hand, in the case of r = R+ 1,

logCR+1,m,w,t ∝
〈

logHw,κr Ûκr,t

〉
=

〈
log

1

M
Hw,K+1UK+1,t

〉
= 〈logHw,K+1〉+ 〈logUK+1,t〉 − logM

(32)

E. Derivation of Hw,k

The variational posterior distribution of the harmonic com-
ponents of the basis matrix Hw,k can be derived from the other
parameters as follows.

log q(Hw,k)

∝ 〈log (p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(H1:K |bH , H̄)
)
〉

=

(∑
r,m,t

δκr,kYw,tCr,m,w,t + (bhw,k)−1H̄w,k + 1− 1

)

· logHw,k −

(∑
r,m,t

δκr,k〈Xr,m,t〉+ (bHw,k)−1

)
Hw,k,

(33)

where 〈Xr,m,t〉 is

〈Xr,m,t〉 =

〈
vrπr,m√

2πφ
exp

(
− (t− τr − (m− 1)φ)2

2φ2

)〉
(34)

Since the integral of the Gaussian mixture distribution be-
comes 1 if integrating over time T and all mixture modes
M , the following holds.∑

r,m,t

〈Xr,m,t〉 =
∑
r

〈vr〉. (35)

Therefore, the parameters of the variational posterior dis-
tribution of the basis matrix of the harmonic components
q(H1:K) =

∏
w,k Ga(Hw,k|âHw,k, b̂Hw,k) are derived as

âHw,k =
∑
r,m,t

δκr,kYw,tCr,m,w,t + (bhw,k)−1H̄w,k + 1

b̂Hw,k =

(∑
r

δκr,k〈vr〉+ (bHw,k)−1

)−1
. (36)

The template basis matrix H̄ is defined in (5).

F. Derivation of Hw,K+1

The variational posterior distribution of the nonharmonic
component in the basis matrix HN

w can be derived from the
other parameters as follows.

log q(Hw,K+1)

∝ 〈log (p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(HK+1|gH , αgH )
)
〉

=

(∑
m,t

Yw,tCR+1,m,w,t − 2αgH − 1

)
logHw,K+1

− 1

2

(
2

(∑
t

〈UK+1,t〉

)
Hw,K+1

+2

〈(
ĝHw
αgH

)−1〉
1

Hw,K+1

)
,

(37)

where 〈
1

ĝHw

〉
=

〈
1

gHw+1

〉
+

〈
1

gHw

〉
. (38)

Therefore, the parameters of the variational posterior distri-
bution of the basis matrices of the nonharmonic components
q(HK+1) =

∏
wGIG(Hw,K+1|âNw , b̂Nw , p̂Nw ) are derived as

âNw = 2
∑
t

〈UK+1,t〉

b̂Nw = 2αgH
(〈

1

gHw+1

〉
+

〈
1

gHw

〉)
p̂Nw =

∑
m,t

Yw,tCR+1,m,w,t − 2αgH . (39)

In addition, the expectation 〈x−1〉 of the inverse gamma
distribution IG(x|α, β) equals αβ.

G. Derivation of UK+1,t

The variational posterior distribution of the nonharmonic
component of an activation UK+1,t can be derived like
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Hw,K+1.

log q(UK+1,t)

∝ 〈log (p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(UK+1|GU , αgU )
)
〉

=

(∑
m,w

Yw,tCR+1,m,w,t − 2αgU − 1

)
logUK+1,t

− 1

2

(
2

(∑
w

〈Hw,K+1〉

)
UK+1,t

+2

〈(
ĝUt
αgU

)−1〉
1

UK+1,t

)
,

(40)

where 〈
1

ĝUt

〉
=

〈
1

gUt+1

〉
+

〈
1

gUt

〉
. (41)

Therefore, the parameters of the variational posterior distribu-
tion of an activation of nonharmonic components q(UK+1) =∏
tGIG(UK+1,t|âNt , b̂Nt , p̂Nt ) are derived as

âNt = 2
∑
w

〈Hw,K+1〉

b̂Nt = 2αgU
(〈

1

gUt+1

〉
+

〈
1

gUt

〉)
p̂Nt =

∑
m,w

Yw,tCR+1,m,w,t − 2αgU . (42)

H. Derivation of vr

Using (35), the variational posterior distribution of the
energy of a single tone vr is derived as

log q(vr)

∝ 〈log (p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(v|av, bv))〉

=

(∑
m,w,t

Yw,tCr,m,w,t + avr − 1

)
log vr

−

(∑
w

δκr,k〈Hw,k〉+ (bvr)
−1

)
vr,

(43)

Therefore, the parameters of the variational posterior distribu-
tion of the energy of a single tone q(v) =

∏
r Ga(vr|âvr , b̂vr)

are derived as

âvr =
∑
m,w,t

Yw,tCr,m,w,t + avr

b̂vr =

(∑
w

δκr,k〈Hw,k〉+ (bvr)
−1

)−1
. (44)

I. Derivation of τr

Using (35), the variational posterior distribution of the
estimated onset time of the r-th note τr is derived as

log q(τr)

∝ 〈log (p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(τ |S, στ ))〉

= −1

2

(∑
m,w,t Yw,tCr,m,w,t

φ2
+

1

σ2
τ

)
τ2r

+

(
−
∑
m,w,t Yw,tCr,m,w,t((m− 1)φ− t)

φ2
+
t
Sκr,t0
r

σ2
τ

)
τr.

(45)

Using the quadratic formula

−1

2
AX2 +BX = −A

2
(X −A−1B)2 +

1

2
A−1B2, (46)

Since the mean is equivalent to A−1B and the variance is
A−1, the parameters of the variational posterior distribution
of onset times q(τ ) =

∏
rN (τr|t̂

Sκr ,t0
r , σ̂2

τ ) are derived as

t̂
Sκr ,t0
r = A−1B

=
φ2t

Sκr,t0
r

σ2
τ

∑
m,w,t Yw,tCr,m,w,t + φ2

−
σ2
τ

∑
m,w,t Yw,tCr,m,w,t ((m− 1)φ− t)
σ2
τ

∑
m,w,t Yw,tCr,m,w,t + φ2

σ̂2
τ = A−1

=
φ2σ2

τ

σ2
τ

∑
m,w,t Yw,tCr,m,w,t + φ2

(47)

J. Derivation of Lr,m

The variational posterior distribution of the SBP parameter
Lr,m is derived as

log q(Lr,m)

∝ 〈log (p(Y |H1:K ,HK+1,UK+1,v, τ ,L, φ)

· p(L|βL)
)
〉

=

(∑
w,t

Yw,tCr,m,w,t + 1− 1

)
logLr,m

+

(∑
w,t

M∑
l=m+1

Yw,tCr,l,w,t + βr,m − 1

)
log(1− Lr,m).

(48)

Therefore, the parameters of the variational posterior distribu-
tion of SBP parameters q(L) =

∏
r,m Beta(α̂r,m, β̂r,m) are

derived as

α̂r,m =
∑
w,t

Yw,tCr,m,w,t + 1

β̂r,m =
∑
w,t

M∑
l=m+1

Yw,tCr,l,w,t + βr,m. (49)
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K. Variational lower bound

The variational lower bound B(q) (see (19)) can be rewritten
as

B(q) =Eq [p(Y ,H1:K ,HK+1,UK+1,v, τ ,L|Φ)]

− Eq [q(H1:K ,HK+1,UK+1,v, τ ,L)] .
(50)

Using the parameters of the variational posterior distribution
derived in (31)-(49), this lower bound can be calculated.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

We conducted the following experiment to evaluate the
estimation accuracy of musical features (onset times and
intensities) using our proposed model. However, since it is
difficult to correctly estimate note duration if the sustain pedal
is used, note duration was excluded from the evaluation in
this study. Firstly, we computed the accuracy of the single
resolution architecture with a STFT time frame length of 32ms
and half-overlap time shift. The accuracy of our proposed
multiresolution analysis method was computed as well and
compared with the above accuracy. The analysis steps of the
multiresolution architecture were as follows (see Fig. 4).

1) STFT of the audio signal of both score-based and
expressive performances using a time frame length of
64ms.

2) Fast dynamic time warping (fast DTW) [26] between
them to align the two performances and to estimate the
onset times.

3) Application of the Hierarchical Bayesian NMF to esti-
mate every onset time.

4) STFT of the expressive performance audio signal using
a frame length of 32ms.

5) Using the obtained onset times as prior for the second
NMF computation.

We used three pieces ((i) Chopin, Ballade Op.52, No.4, (ii)
Chopin, Prelude Op. 28, No. 24, (iii) Chopin, Etude Op. 10,
No. 1) from the International Piano-e-Competition data [27] as
expressive performances, and data from the Classical Archives
[28] as score-based performances for this experiment. The
MIDI data was converted to monaural WAVE format using
Cubase (Helion SE Piano), and the first 15 seconds of the
three pieces were used for this paper.

Table I shows the parameters that we used in the experiment.

B. Experimental results

The experimental results of our proposed system are shown
in Table II. ‘Single’ of Table II indicates the results of non-
multiresolution analysis (using only score-based performance
data for onset estimation). ‘Multi’ indicates the results of
multiresolution analysis (first step using score-based perfor-
mance data, second step using estimated onset times from
previous step). The mean and the variance of the estimation
accuracy were calculated based on the difference between
correct onset times and estimated onset times. Furthermore,
the intensities were evaluated based on the correlation between

Fig. 4. Processing steps of the musical spectrogram analysis system based
on multiresolutional hierarchical Bayesian NMF. In the 1st step, the system
is using the score-based performance data, aligning it with the expressive
performance for a first estimation of onset times. In the 2nd and later steps,
the system refines the estimates from the respective previous step by using
STFT with increased time resolution.

TABLE I
PARAMETERS USED FOR THE MULTIRESOLUTIONAL HIERARCHICAL

BAYESIAN NMF

Sampling frequency 16 kHz
Overtone magnitude attenuation factor α = 1.5
Number of harmonics N = 8
Harmonic basis bHw,k = 1

3×(max
∑
t Yw,t)

Nonharmonic basis αgH = 0.0002
Nonharmonic activation αgU = 0.01
Single tone energy avr = 1.0, bvr = 1.0
Number of mixtures of the GMM M = 30
Standard deviation of the GMM φ = 1.0
Onset variance σ2

τ = 2.0

SBP βr,m = 10× exp(−m
8
)∑

l exp(−
m
8
)

the normalized MIDI velocities of the MIDI data used to
generate the audio data and the normalized MIDI velocities es-
timated from this data. Although both analysis methods (non-
multiresolution and multiresolution) could estimate the onset
times, the multiresolution analysis displays further increased
accuracy.

Additionally, Fig. 5, 6, and7 show the piano roll data esti-
mated from the activations, obtained using a threshold which
was found by trial-and-error. For note duration estimation, we
utilized the posterior parameters of the stick-breaking process
L formulated in (12). We then calculated the r-th single tone’s
duration dr in number of frames as

arg max
dr

dr∑
m=1

πr,m

s.t.

dr∑
m=1

πr,m < 0.97 (51)

Piano keystrokes that look continuous in the figures can be
separated using the corresponding estimated onset information
explicitly.
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TABLE II
MEAN AND VARIANCE OF ESTIMATED ERROR OF THE ACTIVATION

Music piece Onset time error Intensity correlation
(i) Op. 52, No. 4 (Single) µ = −2.82, σ2 = 22.6 r = 0.65
(i) Op. 52, No. 4 (Multi) µ = 0.35, σ2 = 18.4 r = 0.67
(ii) Op. 28, No. 24 (Single) µ = 0.82, σ2 = 2.13 r = 0.65
(ii) Op. 28, No. 24 (Multi) µ = 0.52, σ2 = 1.04 r = 0.58
(iii) Op. 10, No. 1 (Single) µ = −1.63, σ2 = 25.6 r = 0.31
(iii) Op. 10, No. 1 (Multi) µ = −1.56, σ2 = 20.0 r = 0.38

Fig. 5. The estimated piano roll from ‘Chopin, Ballade Op.52, No.4’. The
correct piano roll is shown on the left, and the estimated piano roll on the
right. Using the corresponding estimated onset information, we can separate
consecutive keystrokes of the same note even if they look continuous in the
piano roll.

Regarding the individual estimation accuracy of all onset
times, although we could obtain high accuracy for several
notes, there were some estimated onset times that deviated
significantly from the groundtruth. In consequence, the vari-
ances of the estimation error is relatively large. The following
reasons might cause this estimation error:
• Large deviations of the initial estimates obtained by time

alignment with score data using DTW
• A sub-optimal choice of the variance for estimation of

onset time σ2
τ

• A sub-optimal choice of the standard deviation φ and the
number of mixtures M of the GMM modeling the shapes
of the single tones’ energy envelopes.

These problems could be resolved by modeling the relation-
ship between score-based and expressive performance spec-
trogram (time contraction and dilation) using not DTW but a
hidden Markov model (HMM).

Consequently, the experimental results show that the mul-
tiresolution NMF analysis performed significantly better than
a non-multiresolution NMF analysis for detailed analysis of
musical spectrograms.

V. CONCLUSION

We proposed multiresolution NMF based on hierarchical
Bayesian NMF for performance detail analysis. By applying

Fig. 6. The estimated piano roll from ‘Chopin, Prelude Op. 28, No. 24’. The
correct piano roll is shown on the left, and the estimated piano roll on the
right. Using the corresponding estimated onset information, we can separate
consecutive keystrokes of the same note even if they look continuous in the
piano roll.

Fig. 7. The estimated piano roll from ‘Chopin, Etude Op. 10, No. 1’. The
correct piano roll is shown on the left, and the estimated piano roll on the
right. Using the corresponding estimated onset information, we can separate
consecutive keystrokes of the same note even if they look continuous in the
piano roll.

stick-breaking processes, which are one of the construction
methods of Dirichlet processes, we could obtain note durations
as well as onset times and intensities of every single tone
from audio data. The experimental results show that the mul-
tiresolution analysis and the hierarchical Bayesian inference
is effective for performance detail analysis. In future research,
applying the Beta process [20] in our system can be considered
in order to obtain the piano roll (binary variables) of expressive
performances, as opposed to thresholding activation values.
Furthermore, individual notes in chords are usually slightly
shifted in time, even if they appear simultaneously in the
musical score. Therefore, considering that every note should
be treated independently, we need to not only use DTW but
also a factorial HMM (FHMM) that can deal with multiple
independent series. Furthermore, we want to develop a human
performance model, which could be used to turn expression-
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less score data into expressive human-like performances.
A large amount of symbolic music data is needed for

machine learning in recent years. Our proposed model can be
used to obtain such data from audio recordings by estimating
piano roll representations of real performances. Practically, the
method could also be used without score information by using
standard NMF in the first step. Our proposed architecture using
multiresolution analysis can raise the estimation accuracy
significantly, and we therefore think that other NMF models
can also utilize this architecture in order to deal with problems
like sound source separation.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Number 17H00749.

REFERENCES

[1] M. Hashida, T. Matsui, and H. Katayose, “A new music database
describing deviation information of performance expressions.” 2008.

[2] D. Chazan, Y. Stettiner, and D. Malah, “Optimal multi-pitch estimation
using the em algorithm for co-channel speech separation,” in Acoustics,
Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE Interna-
tional Conference on, vol. 2. IEEE, 1993, pp. 728–731.

[3] A. Klapuri, T. Virtanen, and J.-M. Holm, “Robust multipitch estimation
for the analysis and manipulation of polyphonic musical signals,” in
Proc. COST-G6 Conference on Digital Audio Effects, 2000, pp. 233–
236.

[4] M. Goto, “A predominant-f/sub 0/estimation method for cd recordings:
Map estimation using em algorithm for adaptive tone models,” in Acous-
tics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01).
2001 IEEE International Conference on, vol. 5. IEEE, 2001, pp. 3365–
3368.

[5] S. Godsill and M. Davy, “Bayesian harmonic models for musical pitch
estimation and analysis,” in Acoustics, Speech, and Signal Processing
(ICASSP), 2002 IEEE International Conference on, vol. 2. IEEE, 2002,
pp. II–1769.

[6] C. Raphael, “Automatic transcription of piano music.” in ISMIR, 2002.
[7] K. Takahashi, T. Nishimoto, and S. Sagayama, “Multi - pitch analysis

using deconvolution of log - frequency spectrum,” IPSJ SIG Technical
Reports, vol. 2003, no. 127 (2003-MUS-053), pp. 61–66, 2003.

[8] M. Goto, “A real-time music-scene-description system: Predominant-
f0 estimation for detecting melody and bass lines in real-world audio
signals,” Speech Communication, vol. 43, no. 4, pp. 311–329, 2004.

[9] H. Katmeoka, T. Nishimoto, and S. Sagayama, “Separation of harmonic
structures based on tied gaussian mixture model and information crite-
rion for concurrent sounds,” in Acoustics, Speech, and Signal Processing,
2004. Proceedings.(ICASSP’04). IEEE International Conference on,
vol. 4. IEEE, 2004, pp. iv–iv.

[10] S. Saito, H. Kameoka, T. Nishimoto, and S. Sagayama, “Specmurt anal-
ysis of multi-pitch music signals with adaptive estimation of common
harmonic structure.” in ISMIR, 2005, pp. 84–91.

[11] H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch analyzer
based on harmonic temporal structured clustering,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 982–
994, 2007.

[12] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.

[13] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for
polyphonic music transcription,” in Applications of Signal Processing
to Audio and Acoustics, 2003 IEEE Workshop on. IEEE, 2003, pp.
177–180.

[14] P. Smaragdis, “Non-negative matrix factor deconvolution; extraction
of multiple sound sources from monophonic inputs,” in International
Conference on Independent Component Analysis and Signal Separation.
Springer, 2004, pp. 494–499.

[15] T. Virtanen and A. Klapuri, “Analysis of polyphonic audio using source-
filter model and non-negative matrix factorization,” in Advances in
models for acoustic processing, neural information processing systems
workshop. Citeseer, 2006.

[16] M. D. Hoffman, D. M. Blei, and P. R. Cook, “Bayesian nonparametric
matrix factorization for recorded music.” in ICML, 2010, pp. 439–446.

[17] M. Nakano, J. Le Roux, H. Kameoka, Y. Kitano, N. Ono, and
S. Sagayama, “Nonnegative matrix factorization with markov-chained
bases for modeling time-varying patterns in music spectrograms,” in
International Conference on Latent Variable Analysis and Signal Sepa-
ration. Springer, 2010, pp. 149–156.

[18] E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic spectral
decomposition for multiple pitch estimation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 528–537,
2010.

[19] M. Nakano, J. Le Roux, H. Kameoka, T. Nakamura, N. Ono, and
S. Sagayama, “Bayesian nonparametric spectrogram modeling based on
infinite factorial infinite hidden markov model,” in Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2011 IEEE Workshop on.
IEEE, 2011, pp. 325–328.

[20] D. Liang and M. D. Hoffman, “Beta process non-negative matrix
factorization with stochastic structured mean-field variational inference,”
arXiv preprint arXiv:1411.1804, 2014.

[21] K. Ochiai, M. Nakano, N. Ono, and S. Sagayama, “Concurrent non-
negative matrix factorization using multi-resolution spectrograms for
multipitch analysis of music signals,” IPSJ SIG Technical Reports
(MUS), vol. 2011, no. 5, pp. 1–6, 2011.

[22] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “Rwc music
database : Database of copyright-cleared musical pieces and instrument
sounds for research purposes,” IPSJ Journal, vol. 45, no. 3, pp. 728–738,
2004.

[23] A. T. Cemgil and O. Dikmen, “Conjugate gamma markov random fields
for modelling nonstationary sources,” in International Conference on
Independent Component Analysis and Signal Separation. Springer,
2007, pp. 697–705.

[24] J. Sethuraman, “A constructive definition of dirichlet priors,” Statistica
sinica, pp. 639–650, 1994.

[25] T. S. Ferguson, “A bayesian analysis of some nonparametric problems,”
The annals of statistics, pp. 209–230, 1973.

[26] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, no. 5, pp.
561–580, 2007.

[27] International piano-e-competition. [Online]. Available:
http://www.piano-e-competition.com/

[28] Classical archives. [Online]. Available:
https://www.classicalarchives.com/

1635

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:58-0500
	Preflight Ticket Signature




