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Abstract—In this paper, we propose the schemagram, a novel
representation for visualizing the motives, themes, sections, as
well as all the possible repeated patterns in symbolic musical data.
And a geometry-based pattern discovery algorithm combining
a clustering method is introduced for finding repeated musical
patterns. Repeated patterns are essential elements for human to
perceive the structure and meanings of music. Although there are
many algorithms that aim to discover repeated patterns within
a musical piece, the task of intra-opus pattern discovery is still
an open problem due to the large variances between patterns
in terms of amount, size, significance, etc., which result in the
ambiguity for establishing a pattern. In this paper, we examine
the geometric approach for finding repeated patterns, and explore
the capability of the schemagram to interpret the structure of
a musical piece through chronologically organizing the repeated
patterns found within the piece.

I. INTRODUCTION

Music is prominently repetitive, and repeated patterns are
the vocabulary of music. The recognition of repeated patterns
is an important step toward comprehending the music and has
been stressed by music theorists and music psychologists [1],
[2], [3]. Every piece of music has a foundation of patterns
which builds the senses of periodicity and symmetry, and
conducts various kinds of perception of musical form. The
concept of repeated pattern in music is multidimensional.
Most of the musical elements, such as melody, chord, and
rhythm, usually repeat themselves at different levels and in
different ways. Some patterns are easy to be identified, while
some others are rather obscure, whether intentionally or not,
leaving a mysterious realm beneath the surface of music.
Because of the complexity and diversity of musical patterns,
computational approaches for discovering repeated patterns
in musical data have gained attention in the field of music
information retrieval (MIR) [4]–[10]. Studies related to the
topic have focused on different types of musical repetition,
including rhythmic patterns [4], [5], musical structure [6], [7],
and pitch structure [8]–[10]. Among these studies, mining
the repetition of pitch structure is arguably the most widely
investigated task since pitch is the primary element of music.

The pitch structure of a group of musical notes exhibits
the internal relationship in between the notes. That is, any
two members of these notes may occur simultaneously or
successively, and the configuration of these notes defines their
relationship. The size (e.g., the number of notes, the temporal
duration) of repeated pitch structures may vary widely, ranging
from a small segment consisting of a few notes, such as

Fig. 1: The motif of Beethoven’s 5th Symphony, Op. 67, Mvt.
1, MM. 1-5. The opening motif consists of 2 pitch classes, G
and Eb, which form a major third. When the motif recurs right
after its first appearance, the two pitch classes change into F
and D, forming a minor third.

a musical motif, to a whole section of a work containing
hundreds of notes, such as the exposition of a sonata form.
When a specific pitch structure repeats, i.e., when it restates
itself over a music piece, it tends to be perceived consciously
as a whole. A common example is the salient and abundant re-
currence of the motif in Beethoven’s 5th symphony, as shown
in Fig. 1, which signifies that “Fate is knocking at the door.”
From the perspective of the distinctive recurrence of musical
patterns, music scholar V. Kofi Agawu provided exhaustive
manual analysis of topics in music and demonstrated the role
of these characteristic patterns in the structural organization
of music [11]. Moreover, psychological experiments based on
Agawu’s analysis also showed the psychological reality of
musical patterns that influences the cognitive representation
of music [12]. Because that such recurrence over the course
of music can be regarded as a musical schema that enhances
the dynamic interaction between musical patterns and musical
structure [13], a representation that organizes all repeated
patterns of different size along time is helpful for one to realize
and to analyze the form and structure of music from a micro-
to a macro-scale, and vise versa.

To this end, we propose the musical schemagram, a time-
scale representation that employs a geometric-based pattern
discovery algorithm to illustrate the evolution and occurrence
of the repeated patterns along time. The pattern discovery
algorithm which originates from [8] is elaborated first and
is revised to combine with a clustering method to extract the
representative patterns in symbolic musical data. Then, the
musical schemagram of a musical piece, as a case study, is
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Fig. 2: The opening theme of Beethoven’s Piano Sonata No.
1, Op. 2-1, Mvt. 1, MM. 1-2.

represented to demonstrate the comprehensive visualization of
musical structure through the musical patterns within the piece.

II. DISCOVERY OF REPEATED PATTERNS

Pattern discovery algorithms can be categorized into two
approaches: string-based [14]–[16] and geometry-based [8]–
[10]. In the field of MIR, the earlier works on musical pattern
discovery mainly aimed at finding melodic patterns, hence the
music to be processed is represented as a string of notes or
as a set of such strings. For monophonic or polyphonic music
which has precise voice leading, it is quite simple and direct
to encode music as string(s). However, not every music can be
represented in the same way with little effort since the voices
of music sometime could be indistinct. In addition, there are
many patterns other than melodies.

As distinct from the string-based methods, geometric ap-
proach represents the music to be analyzed as a multidimen-
sional dataset, i.e. representing all notes of a piece as a set of
points in a Euclidean space. Then, the set of points is used to
calculate all the displacement vectors1, i.e. onset differences
and pitch differences, constituted by the notes. To put it briefly,
geometric approach calculates the displacement vectors and
finds repeated patterns by inspecting these vectors. Suppose
that there are a pattern A and a repetition of the pattern A′

in a space. Then all notes in A should experience a same
displacement when translating to their counterparts in A′, as
shown in Fig. 3. In other words, when a pattern repeats, we can
always find a group of identical displacement vectors whose
initial points form the pattern, and whose terminal points
form the repetition of the pattern. Generally speaking, pattern
discovery algorithms which adopt geometric approach like
variants of SIA described in [8] can find classes of perceptually
significant musical patterns that are very difficult to compute
with string-based approach.

Although geometric approach allow us to process poly-
phonic music2 as simply and efficiently as monophonic music,
it suffers from two issues. First, as the result of calculating
all displacements within a musical piece in a way of brute-
force search strategy, tens of thousands of patterns would be

1A displacement vector is a geometric object that has magnitude and
direction. A displacement vector is frequently represented graphically as an
arrow, connecting an initial point with a terminal point. That is, a displacement
vector points from an initial point to a terminal point.

2The term polyphonic music here refers to the music of any kind of musical
texture expect the monophonic.

Onset Pitch
-1.0 60
0.0 65
1.0 68
2.0 72
3.0 77
4.0 80
5.0 53
5.0 56
5.0 60
5.5 79

5.6667 77
5.8333 76

6.0 53
6.0 56
6.0 60
6.0 77
7.0 53
7.0 56
7.0 60

TABLE I: The geometric representation of the musical clip in
Fig. 2. Each row in the table indicates a note event.

found, and most of them are of little musical interest. Though
the variants of SIA attempt to extract only the musically
interesting patterns, it turns out that there are still a huge pile
of output patterns for a large musical work such as a piano
sonata. Second, SIA finds all occurrences of a given pattern in
an iterative way and thus has the worst-case time complexity
O(kn3) for a k-dimensional dataset of size n. To tackle the
issues mentioned above, the following algorithm adopts the
idea of compactness to expel probably redundant patterns and
utilizes a clustering method to directly get sets of repeated
patterns with all repetitions of a pattern being in the same set.

III. ALGORITHM FOR PATTERN DISCOVERY3

A. Geometric Representation and Displacement Vectors

In the algorithm, a music piece with totally N notes is repre-
sented as a list of note events G := [g1,g2, · · · ,gi, · · · ,gN ]T ,
G ∈ RN×2

+ , where gi := [oi; pi], gi ∈ R2, represents the ith
note. A note event has two values: oi is the onset time (in
crotchet beats), and pi is the pitch number (in MIDI number).
These note events are sorted in ascending order, where onset
time is the primary sort key and pitch number is the secondary
sort key. For instance, the music clip shown in Fig. 2 can be
represented as a list shown in TABLE I, where every note is
represented by a 2-D vector. As a result, every note gi in a
musical piece is represented as a point in the 2-D Euclidean
space with onset and pitch as its position. This is called
the geometric representation of a music piece. With such a
representation, we compute dij , the 4-D displacement vector
pointing from the jth note to the ith note, defined as follows:

dij = (oji, pji, j, i), (1)

where oji = oi−oj and pji = pi−pj . This means oji and pji
are the differences of onset and pitch respectively. Note that

3The source code can be found at https://github.com/Tsung-Ping/
Pattern-Discovery.
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the initial point j and the terminal point i of the displacement
are saved together with oji and pji for better accessibility to
these indices. Because that dii is a translation to self, and that
dij and dji are of the same magnitude, we only calculate the
dij for 1 ≤ j < i ≤ N .

B. Find groups of identical displacement vectors

After computing the all displacement vectors between any
two notes, the next step is to find groups of displacement
vectors having equal oji and pji. Since the pitch structure
of a pattern may vary when repeating, tolerance values are
defined so that two displacement vectors with the variance
smaller than the tolerance values are considered identical. In
particular, we set two types of tolerance, horizontal tolerance
θh and vertical tolerance θv . More specifically, given two note
groups A := {g1,g2, · · ·gK} and A′ := {g′1,g′2, · · · ,g′K},
A,A′ ⊂ G, and A 6= A′, then A and A′ are two repeated
patterns if for every gj ∈ A, there exists one g′i ∈ A′ and
two constants (∆o,∆p) such that

|oji −∆o| ≤ θh (horizontal tolerance) (2)
|pji −∆p| ≤ θv (vertical tolerance) (3)

The above conditions are implemented as follows. First,
the displacement vectors are sorted according to the onset
difference oji, and those vectors with their onset time differing
within the horizontal tolerance are grouped together. Second,
each group of vectors from previous step are sorted again
based on the pitch difference pji, and similarly, the vectors
whose pitch differences differ within the vertical tolerance are
grouped together.

After the two steps, the displacement vectors are divided
into small groups with all vectors within a group being
identical. And the initial points and the terminal points of each
group form a pattern and its repetition respectively. However,
a vector in a group might not be regarded as a member of that
group even if the vector is identical to the other vectors. The
reason is that the initial point of the vector may be far from
those of the other vectors, as the note p3 in Fig. 3. Therefore,
we further adopt the adjacent tolerance θa to prevent such a
situation. Technically, the vectors in each group are sorted by
their initial points; if the onset difference between any two
initial points is larger than θa, that is,

ok+1 − ok > θa (adjacent tolerance), (4)

the group will be split into two new groups. In this paper, we
set θh = 0.1, θv = 1, and θa = 2, respectively.

C. Remove patterns of low compactness

Having the groups being established, the initial points and
the terminal points of the vectors in each group will be draw
out respectively to construct a pattern and a repetition of this
pattern. That is, a pair of patterns can be obtained out of
each group by reading the initial and terminal points off from
the vectors in the group. Nonetheless, a lot of patterns found
in this way just coincidentally share identical displacement
vectors and should not be considered musically meaningful.

Fig. 3: The translation of a pattern. The two notes p1 and p2
in pattern A will experience a same displacement ∆x when
translating to their counterparts p4 and p5 in pattern A′. That
is, ∆x14 is equal to ∆x25. Note that p3 and p6 are outsiders
for A and A′, i.e., they do not belong to A and A′, although
∆x36 is equal to ∆x14 and ∆x25.

Fig. 4: One of the output patterns for the Beethoven’s Piano
Sonata No. 1, Op. 2-1, Mvt. 3, MM. 1-8. The excerpt shows
the first and the second appearances of the pattern, marked in
red and in yellow respectively.

For instance, we may find a pair of patterns from the example
shown in Fig. 2: the three notes marked in red at measure 2
are exactly a repetition of the three notes marked in red at
measure 1; this repetition is semantically non-meaningful and
should be expelled by the algorithm.

To filter out this kind of patterns, we add a constraint on
the compactness of each pattern and eliminate those patterns
of low compactness. The compactness of a patten, as defined
in [8], is the ratio of the number of notes in the pattern to the
total number of notes that occur within the region spanned by
the pattern. For a pattern P containing N notes with gf and
gl respectively as its first note and last note, the compactness
of the pattern CP is computed as:

CP =
N

l − f + 1
(5)

The idea of inspecting the compactness is that a coinci-
dently repeated pattern often consists of notes which distribute
sparsely over space. The threshold for compactness is set to
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Data Pest Rest F1est Pocc Rocc F1occ PTL RTL F1TL
Bach 0.76003 0.74567 0.75278 0.36535 0.36535 0.36535 0.37077 0.31691 0.34173

Beethoven 0.67776 0.81890 0.74168 0.84026 0.80010 0.81969 0.64948 0.79493 0.71488
Chopin 0.45012 0.52498 0.48467 0.98925 0.98925 0.98925 0.51173 0.55465 0.53233
Gibbons 0.80000 0.48676 0.60525 0.02462 0.02462 0.02462 0.11289 0.07713 0.09165
Mozart 0.61332 0.63742 0.62514 0.93882 0.86827 0.90217 0.59863 0.63540 0.61647
Average 0.66025 0.64275 0.64190 0.63166 0.60952 0.62022 0.44870 0.47580 0.45941

TABLE II: Evaluation on JKU-PDD.

be the mean of total compactness plus 2 standard deviations.
Moreover, since that there are usually isolated membership
(i.e., fragmentary notes) attached to extracted patterns, we
further employ a trawling method to trim off the patterns [9].
Explicitly speaking, the algorithm goes through each pattern
from both ends, returning a subset of the pattern that has a
compactness greater than a threshold t and that contain at least
n points.

D. Cluster the patterns

To find all occurrences of each pattern, we employ an
unsupervised clustering method, the Density-based Spatial
Clustering of Applications with Noise (DBSCAN) [17]. The
algorithm first constructs the pitch structure of each pattern,
and then calculates the Levenshtein distances [18] between
pitch structures as the distance metrics for later clustering.
The pitch structure of a pattern is represented as all the
displacement vectors within the pattern. The DBSCAN method
is a density-based clustering algorithm which does not require
to predetermine the number of clusters and at the same time
can leave data in sparse regions to be classified as noise. This
benefits the task of clustering patterns since most of the time
we have no idea of how to choose the number of repeated
patterns. As a result, the patterns that are assigned to a cluster
are considered a repeated pattern, and the patterns that are not
assigned to a cluster are discarded.

IV. EVALUATION

A. Pattern Discovery

We evaluate the proposed algorithm on the JKU Patterns
Development Database (JKU-PDD) [19], which is the database
of classical music for the pattern discovery task of the MIREX
evaluation campaign. This task is evaluated against the follow-
ing metrics: establishment precision (Pest), establishment recall
(Rest), and establishment F1 score (F1est); occurrence preci-
sion (Pocc), occurrence recall (Rocc), and occurrence F1 score
(F1occ); three-layer precision (PTL), three-layer recall (RTL),
and three-layer F1 score (F1TL). In short, the establishment
metrics focus on the ability to find out at least one occurrence
of a repeated pattern, the occurrence metrics measure the
capacity of retrieving all the occurrences of a repeated pattern,
and the three-layer metrics test the overall similarity between
the output patterns and the ground truth [20]. Comprehensive
definition of these metrics can be found in [21].

Experiment results listed in TABLE II indicate that the
performance of the pattern discovery algorithm varies a lot

over different musical styles. For instance, for Bach’s fugue,
the algorithm reached the highest establishment F1 score
0.75278 but a relatively low occurrence F1 score 0.36535,
while for Chopin’s mazurka, the algorithm got the lowest
establishment F1 score 0.48467 but the highest occurrence
F1 score 0.98925. In other words, the proposed algorithm
has a good ability to establish at least one occurrence of
the patterns in the fugue, but has some difficulties in finding
all their occurrences. And it is just opposite to the case of
the mazurka. This is partly because that the subject and the
countersubjects4 of the fugue appear successively and then
get intertwined subsequently so that it is easy to discover
them at the beginning of the piece but hard to retrieve one
of them from the others over the course of the music. On the
other hand, the algorithm found many patterns not identified
in the ground truth as the mazurka is the largest piece in the
dataset with more than 2,000 notes, and such a result decreased
the establishment F1 score. In terms of overall performance,
the algorithm got the highest three-layer F1 score 0.71488
for Beethoven’s piano sonata, and both its establishment and
occurrence F1 scores are above the average. Nevertheless, the
output patterns of the piano sonata disclosed some limitations
of the algorithm. Take the opening section of the piece as an
example, the algorithm established the red pattern in Fig. 4,
with the note C5 at measure 4, beat 3 attached to the end
of the pattern. This note surely translates a third upwards to
the yellow one along with the red pattern; however, the red
pattern semantically ends with a cadence at measure 4, beat
2. In such a case, the semantically redundant note is hard
to expelled by the algorithm. This algorithm has been tested
in the MIREX 2017 competition on Discovery of Repeated
Patterns and Themes and its performance is comparable with
other submissions to the competition. Detailed results can be
found in http://www.music-ir.org/mirex/wiki/2017:Discovery_
of_Repeated_Themes_%26_Sections_Results.

B. Schemagram: The Illustration of Musical Structure
Most of the demonstrations of musical structure display the

different sections of a musical piece, usually with some sym-
bols or names attached to them. This kind of representation
can easily show the overall plan of a musical piece, yet fail to
explain by itself that why these sections are built and how the
boundary of a section is determined. Due to the fact that the

4In a fugue, a subject is the material, usually a recognizable melody, upon
which part or all of a composition is based. And a countersubject is the
material proposed after the subject occurs that figures prominently but is
subordinate in importance to the subject.
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(a) The schemagram of Beethoven’s Piano Sonata No. 1, Op. 2-1, Mvt. 1.

(b) Cluster #3 in Fig. 5a. (c) Cluster #1 in Fig. 5a.

(d) Cluster #8 in Fig. 5a. (e) Cluster #17 in Fig. 5a.

Fig. 5: (a) The schemagram shows the occurrences of each repeated pattern along the time axis. Each line in the schemagram
indicates one occurrence of a pattern, and lines of the same color stand for patterns in the same cluster. The length of the lines
exhibits the time span of a pattern, and the hight of the lines signifies the number of notes in a pattern. (b) The 1st theme of
the piano sonata. (c) The transposed 1st theme. (d) The 2nd theme of the piano sonata. (e) The coda of the piano sonata.

cognition of musical structure relies greatly on the repeated
patterns, we take advantage of the pattern discovery algorithm
to find repeated patterns of a music and plot these repeated
patterns all together in one diagram to better illustrate the
structure of the music. This representation of musical patterns
as well as musical structure can be regarded a kind of schema
which helps us organize and make sense of information, and
thus we call the diagram schemagram.

To construct the schemagram, the patterns extracted by our
algorithm are clustered first, and a number is assigned to
each cluster according to the chronological order of their first
appearances. The larger the number is, the latter the cluster
appears. Then, we illustrate the period of time spanned by
each pattern along the time axis and indicate the cardinality

(i.e., the number of notes) of each pattern. In consequence,
the schemagram is a time-cardinality representation, where the
time axis is horizontal and the cardinality axis is vertical. And
musical patterns in the schemagram are shown as horizontal
bars of different colors and different lengths.

The schemagram of a musical piece chronologically depicts
the occurrence of repeated patterns of different semantic levels,
including the motif, theme, and even an entire repeated section.
As the repetitions of various patterns collaboratively shape the
sense of structure, the schemagram can interpret the abstract
construction of the musical structure in a more concrete and
comprehensive way. A glance at the schemagram of the 1st
movement from Beethoven’s Piano Sonata No. 1 manifests
the idea. As shown in Fig. 5a, the sections of sonata form,
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Fig. 6: The spatial relationships of the patterns in Beethoven’s Piano Sonata No. 1, Op.2-1, Mvt. 1. Each dot indicates a
pattern, and the size of the dots is proportional to the cardinality of the patterns.

i.e., the exposition (and its repetition), the development, and
the recapitulation, are clearly delineated by the patterns of
the piece. The exposition presents the 1st theme (#3 at time
zero, Fig. 5b), then modulates to the 2nd theme which is in a
contrasting style (#8 at time 79, Fig. 5d), and concludes with
a coda (#17 at time 162, Fig. 5e). After the exposition repeats,
the development briefly restates the 1st theme in a transposed
way (#1 at time 383, Fig. 5c) and immediately jumps to the
2nd theme (#8 at time 411) to explore its harmonic and textural
possibilities almost throughout the left of the development, as
we can see that there are many patterns assigned #8 in this
section. At the end of the development, the music returns to
the tonic key, and some fragments of the 1st theme (patterns
assigned #1 around the time period 570-590) appear to signal
the crucial moment of a sonata form, that is, the return of
the 1st theme. As an altered repeat of the exposition, the
recapitulation comes out with the 1st theme (#3 at time 592)
and has the pattern distribution similar to that of the exposition.

Finally, we employ a dimension reduction method, the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [22],
to further demonstrate the relationship among these patterns
according to their the similarity. Fig. 6 illustrates the relative
spatial relationship among these patterns on a two-dimensional
plane, in terms of the Levenshtein distance mentioned in
Section III-D. The figure shows that, first, the transition part
of the music piece is close to the 1st theme, since some
materials in the 1st theme are reused in the transition; second,
the 2nd theme is far from the 1st theme, probably because
the two themes are contrary to each other in the convention
of composition. Moreover, the coda is close to both the 2nd
theme and the exposition for it functions as the continuation
of the 2nd theme and as the connection with the repetition of
the exposition.

It is worth mentioning that, for this piano sonata, the 2nd
theme is much closer to the exposition than the 1st theme
is, although both of them are definitely essential parts of the
exposition. Such a phenomenon can be explained in several
ways: first, the cardinality of the 2nd theme is larger than that

of the 1st theme; second, the descending intervals (i.e., the
descending intervals in # 8) are characteristic of both the the
2nd theme and the whole exposition; third, the 2nd theme gets
more emphasis in the development section.

From the above observations, we summarize that the
schemagram can not only portray the outline of musical struc-
ture, but can further elaborate the subtleties among structural
sections in terms of the repeated patterns that make a section
distinct from the others on the one hand while integrate these
different sections together on the other hand. Furthermore, the
organization of repeated patterns in a large scale can be further
used to study the functions of repeated patterns as a way of
establishing musical form or the agency of repeated patterns
to mediate with the structure.

V. CONCLUSIONS

We propose the geometry-based pattern discovery algorithm
combining the clustering method DBSCAN to efficiently find
the patterns and their recurrences within a musical piece. The
evaluation on the JKU-PDD indicates the comparability of the
algorithm with the previous works in MIREX while also shows
the limitations for automated pattern discovery. To improve the
performance of the algorithm, a further study on the descrip-
tive knowledge of musically meaningful patterns is required.
Besides, the schemagram, a novel visualization of repeated
patterns, is introduced to demonstrate the roles of repeated
patterns in forming musical structure. An elaboration on the
schemagram of a piano sonata exhibits the interpretability of
such representation. The pattern discovery algorithm along
with the schemagram is useful for automated music analysis
by which the investigations in both the intra-opus and inter-
opus scenarios may dig out more subtleties of music.
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