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Abstract— This paper investigates the application of the steered 
response power - phase transform (SRP-PHAT) method to co-
prime microphone array (CPMA) recordings to estimate the 
direction of arrival (DOA) of speech sources.  While existing 
CPMA approaches for acoustics applications are limited, 
especially under reverberant conditions, the proposed algorithm 
utilises SRP-PHAT to estimate the DOA of speech sources and 
then employs a histogram-based stochastic algorithm using 
steered response power (SRP) adjustment and kernel density 
evaluation (KDE) to improve the DOA estimation accuracy.  
Experiments are conducted for up to three simultaneous speech 
sources in the far field considering both anechoic and reverberant 
scenarios.  Results suggest that the proposed approach achieves 
more accurate DOA estimates than a uniform linear array (ULA) 
with the same number of microphones under both anechoic and 
low reverberant conditions, and it significantly decreases the 
number of microphones of another equivalent ULA while 
maintaining similar performances.  Moreover, the operating 
frequency of the microphone array is largely increased without 
changing the number of microphones, making it possible to 
accurately record higher-frequency components of source signals. 

I. INTRODUCTION 

Speech direction of arrival (DOA) is a conventional topic in 
the field of acoustic signal processing and plays a crucial role 
in a wide variety of real-world applications, such as 
teleconferencing systems [1], smartphones [2], [3] and robotic 
systems [4], [5].  In 2010, co-prime arrays were proposed as a 
sparse sensing method [6], which can achieve sharper beams 
using relatively few elements, exceeding the normal limit 
imposed by the spatial Nyquist sampling theorem.  For the 
application of a co-prime microphone array (CPMA) in 
broadband DOA estimation, experimental results show that co-
prime beamforming is viable and, under some circumstances, 
preferable [7], and then the method is extended by using a 
model-based Bayesian framework trying to determine the 
number of sound sources [8].  Wideband DOA estimation using 
a CPMA is also investigated by developing an algorithm based 
on group sparsity to lower the computational complexity [9].  

However, the existing methods present limited research on 
acoustic environments, particularly when considering speech 
signals and reverberations that can distort the received signals 
and can degrade the performance of the broadband DOA 
estimation approaches using CPMAs. 

Steered response power - phase transform (SRP-PHAT) was 
proposed and could be seen as an extension of the steered 
response power (SRP) approaches [10].  It has been shown to 

be more robust under conditions with high noise and 
reverberation than other DOA estimation and source 
localisation algorithms, which are mostly based on time 
difference of arrival (TDOA) or spectral estimation [10], [11].  
There are also a number of proposed improvements of the SRP-
PHAT algorithm, such as the stochastic region contraction 
approach for multiple source localisation [12] and the scalable 
spatial sampling method to promote the robustness when 
locating the sound sources [13].  

This paper shows that SRP-PHAT can be applied to the 
CPMA to achieve accurate speech DOA estimation under the 
effects of reverberation.  The proposed method in this paper 
estimates the DOA of speech signals in both anechoic and 
reverberant scenarios, which provides an advantage over state-
of-the-art research which do not take reverberation into account 
[8], [9].  By comparing the performances between the CPMA 
and the uniform linear array (ULA), the proposed method using 
a 16-element CPMA achieves better results than a ULA with 
the same number of microphones.  It also obtains equivalent 
accuracy for speech DOA estimation than another ULA with a 
much larger number of microphone capsules, which can save a 
great deal of cost in real-world applications.  Moreover, the 
spatial Nyquist frequency can be increased significantly 
without increasing the number of microphones so that higher-
frequency components of the sources can be recorded more 
accurately than the conventional ULA.  This indicates a 
potential benefit to source separation and speech enhancement 
algorithms based on clustering time-frequency DOA estimates 
[14], [15]. 

The remainder of this paper is organised as follows.  In 
Section II, the mathematical model for co-prime microphone 
array recordings is introduced.  Section III describes the 
proposed method of fitting SRP-PHAT to CPMAs on speech 
DOA estimation.  Section IV demonstrates a stochastic 
algorithm based on histograms utilising SRP adjustment and 
kernel density modelling, which aims at boosting the DOA 
estimation accuracy.  In Section V, experiments of the 
proposed approach in multiple scenarios are performed, and 
then the results and evaluations are given.  The paper is 
concluded in Section VI. 

II. MATHEMATICAL MODEL FOR THE CO-PRIME 
MICROPHONE ARRAY RECORDING 

A CPMA is composed of two uniform linear microphone 
subarrays, which can be illustrated as in Fig. 1.   The numbers 
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(a) M-element subarray 

 
(b) N-element subarray 

 
(c) M⋅N-element co-prime microphone array 

Fig. 1 An illustration of the geometry of co-prime microphone arrays. 
 
of elements of the subarrays, M and N, are a pair of co-prime 
numbers, which mathematically mean that the only positive 
integer that divides both is 1.  Assuming that there are Q 
uncorrelated far-field speech sources (which can be 
narrowband or wideband in theory) impinging on the CPMA 
from different DOAs θi (i = 1, 2, … , Q), and the number of the 
elements is n. So the received signal vector 𝐲𝐲(𝑡𝑡)  can be 
expressed as 

  
                            𝐲𝐲(𝑡𝑡) =  𝜶𝜶𝐬𝐬(𝑡𝑡) ∗ 𝐫𝐫(𝑡𝑡) + 𝐯𝐯(𝑡𝑡)                        (1) 

 
where 𝐲𝐲(𝑡𝑡) = [𝑦𝑦1(𝑡𝑡), … ,𝑦𝑦𝑛𝑛(𝑡𝑡)]𝑇𝑇 , and 𝛂𝛂 = [𝜶𝜶(𝜃𝜃1), … ,𝜶𝜶(𝜃𝜃𝑄𝑄)] 
is the attenuation factors due to propagation effects.  Also, 
𝐬𝐬(𝑡𝑡) =  [𝑠𝑠1(𝑡𝑡), … , 𝑠𝑠𝑄𝑄(𝑡𝑡)]𝑇𝑇 , 𝐫𝐫(𝑡𝑡) =  [𝑟𝑟1(𝑡𝑡), … , 𝑟𝑟𝑛𝑛(𝑡𝑡)]𝑇𝑇  and 
𝐯𝐯(𝑡𝑡) =  [𝑣𝑣1(𝑡𝑡), … , 𝑣𝑣𝑛𝑛(𝑡𝑡)]𝑇𝑇  represent the source signals, the 
reverberation from the environment and the additive noise 
signals, respectively.  Normally, the sources 𝐬𝐬(𝑡𝑡) are seen as 
uncorrelated, and the noise 𝐯𝐯(𝑡𝑡)  is also assumed to be 
uncorrelated zero mean noise with similar power levels at each 
element.    

According to the spatial Nyquist sampling theorem, the 
spacing of any two elements of the microphone array should 
satisfy 𝑑𝑑 ≤ 𝜆𝜆 / 2, where d denotes the spacing and 𝜆𝜆  is the 
wavelength of the received signal, otherwise the beampattern 
of the microphone array will suffer from spatial aliasing.  As a 
result, the design frequency of a ULA with D microphones can 
be defined as                           

 
                               𝑓𝑓𝑜𝑜𝑜𝑜_𝑈𝑈𝑈𝑈𝑈𝑈 =  𝑐𝑐

2𝑑𝑑
=  𝑐𝑐𝑐𝑐

2𝐿𝐿𝑈𝑈
                                 (2) 

            
where 𝐿𝐿𝑈𝑈 is the aperture of the ULA.  For CPMAs, it has been 
derived that the design frequency or the operating frequency of 
a CPMA can be calculated as [16] 
 
                                     𝑓𝑓𝑜𝑜𝑜𝑜_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑐𝑐𝑐𝑐𝑐𝑐

2𝐿𝐿𝐶𝐶
                                      (3)                       

 

where 𝐿𝐿𝐶𝐶  is the CPMA’s aperture, which takes a virtual source 
into account, being larger than its physical length [16]. 

Comparing (3) with (2), it can be found that D is replaced by 
M⋅N, so an M⋅N-element CPMA can be seen equivalent to a D-
element ULA, thus allowing the CPMA to receive higher 
frequency components of speech signals with fewer elements 
than the ULA and exceeding the separation limit determined by 
the spatial Nyquist sampling theorem.   

To describe the reason for CPMAs to achieve much higher 
freedom than ULAs with the same number of microphones, the 
fundamental theory of beamforming is also investigated.  The 
beampatterns of a conventional ULA (𝐵𝐵𝑈𝑈 ) and a co-prime 
microphone array (𝐵𝐵𝐶𝐶 ) can be expressed as (4) and (5), 
respectively.   

 
                           𝐵𝐵𝑈𝑈 =  ∑ 𝑟𝑟(𝑘𝑘)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷−1

𝑘𝑘=0                                  (4) 
 
                               𝐵𝐵𝐶𝐶 =  𝐵𝐵𝑀𝑀  ×  𝐵𝐵𝑁𝑁∗                                        (5) 
 

where 𝑟𝑟(𝑘𝑘) (𝑘𝑘 = 0, 1, … ,𝐷𝐷 − 1) is the received signal by each 
microphone and 𝛼𝛼 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋/𝜆𝜆  with 𝜃𝜃  being the azimuth 
and 𝑗𝑗 =  √−1.  𝐵𝐵𝑀𝑀  and 𝐵𝐵𝑁𝑁  are the beampatterns of the two 
subarrays of the CPMA, and ∗ denotes the conjugate operation.  
It can be seen that the beampattern is a dependent variable of 
the wavelength of the signal, thus being dependent with the 
variation of the frequency of the signal.  The shapes of the 
beampatterns of a conventional ULA and a CPMA, at 2 kHz 
and 6 kHz separately, can be illustrated as in Fig. 2.  The 2 kHz 
is a representative frequency that is lower than the operation 
frequency of both microphone arrays.  In (a) and (b) of Fig. 2, 
it can be seen that the side lobes of the CPMA are cancelled to 

     
                   (a) ULA at 2 kHz                              (b) CPMA at 2 kHz 

    
                   (c) ULA at 6 kHz                              (d) CPMA at 6 kHz 
Fig. 2 Comparison of beampatterns for ULA and CPMA for 2 kHz and 6 kHz 

source frequencies  
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a large extent by staggering the two linear subarrays, and the 
main lobe is also narrower than the ULA, which means that the 
directionality is better at the desired steering angle.  Moreover, 
the 6 kHz is also a selected frequency, which is above the 
operating frequency of the ULA and below that of the CPMA.  
In (c) and (d) of Fig. 2, it is shown that the beampattern of the 
ULA shows two grating lobes, which means the signals 
received from these two directions will be unreasonably 
amplified, while the beampattern for the CPMA has big side 
lobes, but they are not as big as the main lobe.  

III. SRP-PHAT BASED DOA ESTIMATION APPLIED TO CO-
PRIME MICROPHONE ARRAYS 

For linear microphone arrays, it has been shown that the SRP 
can be obtained by summing the generalised cross-correlations 
(GCC) for all combinations of microphone pairs [10].  The 
GCC for one microphone pair can be calculated as  

 
                         𝜏𝜏𝑦𝑦1𝑦𝑦2(𝑝𝑝) =  𝐹𝐹−1�∅𝑦𝑦1𝑦𝑦2(𝑓𝑓)�               (6) 

                                          
where 𝑦𝑦1 and 𝑦𝑦2 represent the outputs of the two microphones.  
𝐹𝐹−1[⋅]  denotes the inverse discrete-time Fourier transform 
(IDTFT) and f stands for the variable in the frequency domain. 
Equation (6) reaches its maximum when 𝜏𝜏 = p.  

 
                                 ∅𝑦𝑦1𝑦𝑦2 = 𝑤𝑤(𝑓𝑓)𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)                           (7) 

 
is the generalised cross-spectrum, with 𝑤𝑤(𝑓𝑓)  being a 
frequency-domain weighting function and 𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓) being the 
cross-spectrum which can be expressed as  
 
                              𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓) = 𝐸𝐸[𝑌𝑌1(𝑓𝑓)𝑌𝑌2∗(𝑓𝑓)]                        (8) 
 
where 𝐸𝐸[⋅]  calculates the mathematical expectation and “*” 
denotes the conjugate operation, with the microphone outputs 
𝑌𝑌𝑛𝑛(𝑓𝑓), (𝑛𝑛 = 1, 2) being the summation of all possible values at 
time instants k.  The equation of 𝑌𝑌𝑛𝑛(𝑓𝑓) is shown as follows. 
 
                       𝑌𝑌𝑛𝑛(𝑓𝑓) =  ∑ 𝑦𝑦𝑛𝑛(𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑘𝑘 , n = 1, 2                  (9) 
 

Substituting IDTFT into (6), the GCC function can be 
derived as  

 
              𝜏𝜏𝑦𝑦1𝑦𝑦2(𝑝𝑝) =  ∫ 𝑤𝑤(𝑓𝑓)𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)+∞

−∞ 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑         (10) 
   
To determine the weighting function, phase transform 

(PHAT) has been proved to be a very effective one for TDOA 
estimation in reverberant scenarios [17], which is expressed as  

 
                                    𝑤𝑤(𝑓𝑓) =  1

�𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)�
                                  (11) 

 
In this case, only the information conveyed in the phase is 

taken into account, and then considering all possible 
microphone pairs in the summation operation, the equation of 
SRP-PHAT algorithm can be shown as 

 
            𝑃𝑃(𝜏𝜏) = ∑ ∑ ∫

𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)

�𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)�
+∞
−∞ 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑𝑆𝑆

𝑙𝑙=𝑚𝑚+1
𝑆𝑆
𝑚𝑚=1         (12) 

 
where P is the SRP of the microphone array, and 𝜏𝜏 is the time 
delay of the sound propagation from the mth microphone to the 
lth microphone, taking the leftmost microphone as the first one 
(m, l = 1, 2, …, S).  For each scanning DOA θ (0˚ ≤ θ ≤ 180˚), 
the time delay in terms of samples can be formulated as 
 
                                     𝜏𝜏 =  |𝑑𝑑𝑚𝑚𝑚𝑚|⋅𝐹𝐹𝑠𝑠⋅cos𝜃𝜃

𝑐𝑐
                                 (13) 

    
where |𝑑𝑑𝑙𝑙𝑙𝑙|  is the magnitude of the distance from the mth 
microphone to the lth microphone, and 𝐹𝐹𝑠𝑠  and 𝑐𝑐  are the 
sampling frequency and the speed of sound, respectively. 

Having considered all the above deductions, the DOA 
estimation algorithm based on SRP-PHAT can be 
mathematically modelled as  

 
 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 = argmax

𝜏𝜏
�∑ ∑ ∫

𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)

�𝜑𝜑𝑦𝑦1𝑦𝑦2(𝑓𝑓)�
+∞
−∞ 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜏𝜏 𝑑𝑑𝑑𝑑𝑆𝑆

𝑙𝑙=𝑚𝑚+1
𝑆𝑆
𝑚𝑚=1 �  (14) 

 
where the 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 represents the time lag that leads to the largest 
value of the SRP, and then the estimated DOA is 
 
                                 𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 𝑐𝑐⋅𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜

|𝑑𝑑𝑚𝑚𝑚𝑚|⋅𝐹𝐹𝑠𝑠
�                           (15)                 

 
If the CPMA is given, the distance between any two of the 

microphones is known, so the DOA estimates can be achieved.  

IV. HISTOGRAM-BASED STOCHASTIC DOA ESTIMATION 
ALGORITHM USING SRP ADJUSTMENT AND KERNEL DENSITY 

MODELLING  

After achieving all the DOA estimates, a histogram can be 
formed from the number of estimates for each angle in the 
steering range.  However, in reverberant and multisource 
scenarios the microphones will receive many signals from 
other directions in addition to the direct source path, which can 
result in a spreading in the histogram and poses a negative 
influence on estimating true DOAs.  To solve this problem, this 
section considers a power-adjusted histogram that is then 
modelled using kernel density estimation (KDE) to locate 
peaks corresponding to the estimated DOA.  

A. SRP Adjusted DOA Histogram 

An energy-weighted histogram has been proposed [14], 
which considers the energy of the time-frequency instants 
when analysing the histogram (similar to other weighting 
approaches [18], [19]).  The DOA estimates with low energy 
will have insignificant contributions to the energy weighted 
DOA histogram.  A similar approach is used here whereby the 
SRP value is used to adjust the histogram, referred to as the 
SRP-adjusted histogram (SAH) and described as  

 

         𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑚𝑚 ) =  �ℎ𝑖𝑖𝑖𝑖𝑖𝑖
(𝜃𝜃𝑚𝑚) − 1,   𝑃𝑃(𝜃𝜃𝑚𝑚) < 𝑇𝑇

ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑚𝑚),   𝑃𝑃(𝜃𝜃𝑚𝑚) ≥ 𝑇𝑇            (16)                       
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where 𝜃𝜃𝑚𝑚  (0˚ ≤ 𝜃𝜃𝑚𝑚  ≤ 180˚) represents each possible DOA 
under concerned, ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑚𝑚) is the original DOA histogram and 
𝑠𝑠𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝜃𝜃𝑚𝑚 )  is the value of the histogram bin at 𝜃𝜃𝑚𝑚  after 
considering the SRP for DOA 𝜃𝜃𝑚𝑚 , 𝑃𝑃(𝜃𝜃𝑚𝑚) that is determined 
from (12). T is a pre-defined threshold, which is the key point 
of the method.  If the threshold is too small, the SAH method 
will not make a large difference, while if it is too big, most of 
the values in ℎ𝑖𝑖𝑖𝑖𝑖𝑖 will be cancelled, which is not as expected.  
According to informal experiments, one third of the subtraction 
of the maximum and the minimum of all the SRPs is found to 
be a good threshold to allow the peaks in the histogram to be 
more distinguishable, thus leading to reliable DOA estimates. 
 

B. Kernel Density Estimation (KDE) Modelling of the SAH 

The SAH approach enables the histogram to focus on the 
most representative contributors in terms of energy, but due to 
the influence of reverberation and multiple sources, there can 
be a few discrete angles possessing higher energy than the true 
sources.  In addition, if there is too much spreading in the 
histogram, the energy of all DOAs can be similar, which shows 
difficulty in finding the peaks of the histogram.  Therefore, to 
improve the accuracy and reliability of DOA estimation, a 
stochastic algorithm based on kernel density estimation (KDE) 
[20] is applied to obtain the probability density function (PDF) 
of the SAH, and then the DOAs can be achieved by searching 
for the local maximum of the PDF. 

By utilizing KDE, the DOA histograms are smoothened 
using a suitable kernel function, and the discrete histograms is 
transformed into continuous ones.  In this way, the probabilities 
of all DOA estimates are taken into account so that the DOA 
estimation method is more reasonable, weakening the results 
of the discrete high-energy scanning points and accumulating 
the effects of close histogram bins to find a local peak.  The 
density function can be achieved as [14] 

 
                              𝑓𝑓(𝑥𝑥) =  1

𝑛𝑛ℎ
∑ 𝐾𝐾 𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
𝑛𝑛
𝑖𝑖=1                          (17)              

 
where K is a selected kernel function, ℎ (ℎ > 0)  is the 
bandwidth which is a smoothing parameter, and 𝑥𝑥𝑖𝑖(𝑖𝑖 =
1,2, … ,𝑛𝑛) is an independent and evenly distributed sample, the 
distribution of which is f.  In this paper, a Gaussian kernel is 
used, but in fact, the impact of the kernel function is much less 
than the selected bandwidth.  The bandwidth is not a fixed 
value but should be chosen such that the correct peaks in the 
PDF can be distinguished.  The bandwidth of the Gaussian 
kernel is calculated as [21] 

 
                           ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 3( 1

70𝑛𝑛√𝜋𝜋
)1/5𝜎𝜎�                               (18) 

 
where  𝜎𝜎�  is the standard deviation of the observed samples. 
After choosing the appropriate bandwidth, the DOA estimation 
can be obtained by searching for peaks in the SAH by analysing 
the first derivative and the second derivative of the PDF as    
 
       𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒_𝐾𝐾𝐾𝐾𝐾𝐾 =  𝜃𝜃𝑚𝑚, 𝑖𝑖𝑖𝑖 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒′ (𝜃𝜃𝑚𝑚) = 0, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒′′ (𝜃𝜃𝑚𝑚) < 0    (19) 

TABLE I 
THE PROPOSED DOA ESTIMATION METHOD 

1)  Start with the recorded speech signals by a co-prime 
microphone array, which is 𝐲𝐲(𝑡𝑡) from (1). 

2)  Convert the signals to the short-term frequency domain. 

3)  

Apply SRP-PHAT to the co-prime microphone array to 
achieve DOA estimates as shown in (14) and (15), and their 
corresponding SRP values are also obtained using (12), thus 
gaining time-frequency DOA estimation 𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒 and the power 
𝑃𝑃(𝜏𝜏). 

4)  Derive the SRP-adjusted histogram according to (16). 

5)  
Apply the KDE method to the histogram, resulting in a 
continuous distribution and then searching for the final DOA 
estimation results 𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  from (19). 

 
Having considered all the aforementioned theories, the 

proposed DOA estimation method is summarised in Table I. 

V. EXPERIMENTS AND RESULTS 

In this section, different scenarios in terms of levels of 
reverberation and numbers of sources are simulated and the 
proposed speech DOA estimation approach as shown in Table 
I is applied to investigate the influences of reverberation and 
configurations of microphone arrays on the performance of 
speech DOA estimation. 

A. Experiment Conduction 
Speech utterances from the IEEE-standard corpus [22] and 

the NOIZEUS speech corpus (clear sources) [23] are utilised to 
simulate scenarios with 1 to 3 speakers talking simultaneously.  
As shown in Table II, a co-prime linear microphone array and 
two contrastive ULAs with the same physical length are placed 
at exactly the same position separately in each experiment.  All 
sources are designed to be of the same distance from the centre 
of the microphone array and are located in 3 fixed positions (S1, 
S2 and S3) in the far field as illustrated in Fig. 3.  Sources are 
rotated over 3 positions resulting in a total of 9 different trials 
for single source cases and 3 trials for scenarios of multiple 
sources, over which the average error of DOA estimation is 
calculated in terms of root mean square error (RMSE), which 
is defined as 

  

              RMSE = � 1
𝐻𝐻
∑ (𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗 −  𝜃𝜃𝑡𝑡)2𝐻𝐻
𝑗𝑗=1                  (20) 

 
where H is the number of estimates and 𝜃𝜃𝑡𝑡  is the true DOA 
(unknown before estimating), respectively.  

All the experiments are completed in Matlab R2016b.  It is 
assumed that the aforementioned settings are placed in a room, 
and the source signals can be degraded by reverberation, which 
is simulated using the IMAGE algorithm [24].  All of the 
configurations and parameters of the experiments are 
demonstrated in Table III. The physical length of the CPMA 
and the ULAs are equal to 0.89m.  Time-domain signals are 
converted to the short-term frequency domain using the Fast 
Fourier Transform, which is applied to 25 ms Hamming-
windowed frames.  DOA estimates of multiple frames are then 
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Fig. 3 Recording Configurations in two dimensions (maintaining z = 2m) 

 
achieved by applying the SRP-PHAT algorithm to the CPMA 
and the ULAs. A histogram of the estimated DOAs is then 
analysed to find the DOA that achieves the highest local 
probability, which is used as the estimated source DOA [14].           

For the selection of the bandwidth of the KDE method, there 
is a built-in algorithm to calculate the optimal value for 
Gaussian kernel in Matlab as shown in (18), which is utilised 
directly in the experiments except for the three-source 
scenarios. When there are three simultaneous sources, it is 
found that the optimal bandwidth determined by Matlab does 
not result in three distinct peaks, and instead a value of 4 is 
found to be a suitable bandwidth in this case (informal 
experiments find other values ranging from 3 to 5 produce 
similar results).     

B. Performance Analysis  
Applying the configurations of Table II and Table III to the 

proposed method, the results are shown in Table IV.  
Firstly, results show that the DOA estimation accuracy of the 

16-element co-prime microphone array is generally higher than 
that of the 16-element ULA under both anechoic and lower 
reverberant conditions (RT60 = 200ms).  For the higher 
reverberant condition (RT60 = 400ms), the 16-element CPMA 
performs slightly worse in the single and two source cases but 
much better in the 3-source case. It should be noted that for the 
2-source case with 400 ms reverberation, all three microphone 
arrays perform quite poorly, which is deemed to be due to the 
DOA histograms often resulting in a large peak that is in 
between the peaks corresponding to direct source directions 
and is likely resulted from a large reflected source. 

 

TABLE II 
CHARACTERISTICS OF THE MICROPHONE ARRAYS 

Type of array Number of 
elements Length (m)  fop  (Hz) 

CPMA 16 0.89  12348.00 
ULA 16 0.89 2890.45 
ULA 72 0.89 13681.46 

TABLE III 
EXPERIMENTAL SETTINGS 

Sampling frequency (fs) 8 kHz 
N 200 
Frame length 25 ms 
Frame overlap 50% 
Number of frames concerned 180 
Azimuth concerned 0˚ - 180˚ 
Azimuth scanning resolution 0.01˚ 
Reverberation time (RT60) {0, 200, 400} ms 
Room dimensions (x, y, z) (8 m, 10 m, 5 m) 
True DOAs (S1, S2, S3) {109.3˚, 81.9˚, 62.9˚} 
Source-array distance 7.4 m 
Speed of sound (c) 343 m/s 

 
Secondly, another comparison is made between the 16-

element CPMA and the 72-element ULA.  Within the 9 
experiments, the 16-element CPMA performs better than the 
72-element ULA in 5 of the scenarios, with inferior accuracy 
in the other 4 cases.  These can be regarded as equivalent in 
terms of their performances.  An important result is that the 16-
element CPMA can estimate all the three sources much more 
accurately than the 72-element ULA when the RT60 is 400ms.  

C. Further Analysis of the advantage using KDE 
Under high reverberation (RT60 = 400ms), one example of 

the DOA estimation of three sources utilising the proposed 
algorithm is shown in Fig. 4.  It can be seen visually that if 
using the discrete histogram to estimate DOAs, the first three 
biggest contributors are all close to 90 degrees, which are not 
correct.  When taking the probability distribution into account, 

 
Fig.4 Comparison between DOA estimation with and without using KDE  
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TABLE IV 
DOA ESTIMATION RESULTS MEASURED BY RMSE (UNIT: DEGREE) 

Type of array 

RT60  = 0 ms RT60  = 200 ms RT60  = 400 ms 

Single 
Source 

Two 
Sources 
(S1, S2) 

Three 
Sources 

Single 
Source 

Two 
Sources 
(S1, S2) 

Three 
Sources 

Single 
Source 

Two 
Sources 
(S1, S2) 

Three 
Sources 

16-element  
CPMA 1.02 0.14 0.89 0.81 0.25 0.84 2.87 12.05 2.95 

16-element 
ULA 1.15 0.21 1.08 1.16 0.25 0.97 2.51 11.79 9.30 

72-element 
ULA 0.99 0.19 1.01 0.99 0.13 0.92 2.36 11.82 9.21 

 
the angles contributing lower energy but having concentrated 
contribution are paid much attention to, thus achieving more 
accurate DOA estimation results.  So by applying KDE, all of 
the bins in the histogram are considered, rather than only 
finding the biggest ones.  This strategy of calculation is more 
reasonable when estimating the DOA. 

VI. CONCLUSIONS 

This paper proposes a DOA estimation method using CPMA 
recordings of speech sources in the far field.  The conventional 
SRP-PHAT algorithm is applied to the CPMA recordings and 
raw DOA estimates are obtained.  The accuracy of these results 
is then enhanced by adjusting the DOA histogram based on 
SRP outputs and using KDE to obtain smooth histogram peaks, 
which are the final DOA estimates.  The experimental 
evaluation is based on conditions including single source, two 
sources and three sources in both anechoic and reverberant 
environments.  Results indicate that the proposed approach 
using a 16-element CPMA leads to accurate speech DOA 
estimation when the environment is anechoic or the 
reverberation is low, and its performance is better than that of 
a ULA with the same number of microphones.  Moreover, the 
proposed algorithm achieves similar accuracy to that obtained 
by a ULA with a much larger number of 72 microphones.  
Compared with a ULA with the same number of microphones, 
the CPMA has the advantage of significantly increasing the 
operating frequency of the microphone array, enabling high 
frequency components of signals to be more accurately 
recorded.  This offers a potential advantage for source 
separation and speech enhancement algorithms based on time-
frequency DOA estimation.  As the beampattern of a CPMA 
can have big side lobes in certain directions, future work will 
involve developing algorithms to deal with these side lobes.  In 
addition, the performance of the proposed method under high 
reverberation and different levels of noise will be further 
improved in the future.  The issues of source separation and 
speech enhancement using the proposed approach will also be 
investigated. 
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