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Abstract—In recent years, many approaches have been pro-
posed for domain adaptation of neural network language models.
These methods can be separated into two categories. The first
is model-based adaptation, which creates a domain specific
language model by re-training the weights in the network on the
in-domain data. This requires domain annotation in the training
and test data. The second is feature-based adaptation, which
uses topic features to perform mainly bias adaptation of network
input or output layers in an unsupervised manner. Recently, a
scheme called learning hidden unit contributions was proposed
for acoustic model adaptation. We propose applying this scheme
to feature-based domain adaptation of recurrent neural network
language model. In addition, we also investigate the combination
of this approach with bias-based domain adaptation. For the
experiments, we use a corpus based on TED talks and the
CSJ lecture corpus to show perplexity and speech recognition
results. Our proposed method consistently outperforms a pure
non-adapted baseline and the combined approach can improve
on pure bias adaptation.

I. INTRODUCTION

Neural network language models (NN-LM) showed to out-
perform count-based language models (LM) in many tasks in-
cluding automatic speech recognition (ASR). NN-LMs achieve
a lower perplexity (PPL) as well as a lower word error rate
(WER) when applied to N-best rescoring.

The domain adaptation of NN-LMs has been a popular task
in recent years and many approaches have been proposed.
These adaptation techniques can be separated into two main
groups, namely model-based and feature-based adaptation. In
model-based adaptation, many methods rely on introducing
an adaptation layer in the model [1], [2], [3]. The model
is first trained on general domain data, and the weights
in the adaptation layer are re-trained with in-domain data.
Another possibility has recently been introduced using a linear
hidden network (LHN) [4], [S]. An LHN introduces another
linear hidden layer without any subsequent non-linearity. The
weights in the LHN are re-trained with in-domain data during
model adaptation. For acoustic model adaptation in ASR, a
concept called learning hidden unit contributions (LHUC) [6],
[7] was described in previous research. LHUC introduces a
multiplicative parameter for each unit of a hidden layer. The
weights needed to calculate the adaptation parameters are
learned on adaptation data. In LHUC, the adaptation weights
are followed by a non-linearity, which limits the value range of
the adaptation parameter between zero and two. This method
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has also been applied to model-based LM adaptation [8]. The
adaptation weights of the LHUC are learned during re-training
with in-domain data. In general, model-based adaptation meth-
ods require domain labels in the corpus for all the datasets used
in training, validation and testing. Moreover, they require a
relatively large amount of adaptation data [8]. In model-based
adaptation, there is one model for every domain.

In addition to model-based adaptation, there have also been
many methods proposed for feature-based domain adaptation.
These methods make use of features to describe the topic of
a text. A popular topic model with which to generate these
features is latent Dirichlet allocation (LDA) [9]. LDA has been
the most widely-used topic feature in previous research. The
feature is used as an additional input to the network [10],
[11], [12]. Through this additional input, topic features mainly
add a domain dependent bias to the input of the network.
The advantage of feature-based adaptation over model-based
adaptation is that the topic features can be extracted in a
completely unsupervised manner. This makes the approach
applicable to a wider range of datasets, and it is in practice
preferred to model-based adaptation. Moreover, all domains
are covered by just a single model.

In this paper, we propose feature-based domain adaptation
using LHUC and topic features generated from an LDA topic
model. In our application of LHUC, the adaptation weights for
the LHUC are calculated from topic features generated from
an LDA. We apply LHUC adaptation parameters to the output
of the LSTM. That means, it performs the domain dependent
gating of the hidden units in the LSTM. In our experiments,
feature-based LHUC showed a larger relative improvement
than model-based LHUC.

In addition to feature-based LHUC domain adaptation, we
also propose a combination with bias adaptation using an
LHN. In our model, we use two different adaptation layers, one
where the weights are adapted by LHUC and one where we
add a topic dependent bias term. The outputs of both adapta-
tion layers are added before the output layer. Our experimental
results suggest that the effects of both adaptation schemes are
complementary because the combined model further improves
on bias adaptation or LHUC based adaptation. To the best of
our knowledge, we are the first to apply this combination to
LM domain adaptation.

All NN-LMs in the experiments use long short-term mem-
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ory (LSTM) [13] in the recurrent layer because it is the current
state of the art for recurrent neural network language models
(RNN-LM) [14], [15], [16], [17]. The datasets we use for
our experiments are based on TED talks and the corpus of
spontaneous Japanese (CSJ) [18]. We use the Kaldi [19] based
TED-LIUM [20] and CSJ recipes [21] to provide ASR results
(100-best rescoring). For TED talks, we extended the training
set for the LMs by including additional TED talks.

II. RECURRENT NEURAL NETWORK LANGUAGE MODEL
AND BIAS-BASED DOMAIN ADAPTATION
A. LSTM-LM

We first briefly review a baseline LSTM-LM as shown in
Figure 1 (a). We encode the current word ID with a one-hot
vector w(t). The input to the LSTM x(t) is calculated using
the word embedding matrix U™

z(t) = UMw(t). (1)

The following set of equations are used to calculate the output
h(t) and the state c(t) of a single LSTM cell [15]

i(t) = o (WO (t) + WED Bt — 1) + p0), 2)
F&) = o(WEg(t) + WEDR(E — 1) + D), A3)
o(t) = c(WEg(t) + WOt — 1) + b)), @)
g(t) = tanh(WEW () + WEDR(t — 1) +b®),  (5)
c(t) = f(t) Oc(t—1)+i(t) © g(t), (6)
h(t) = o(t) ® tanh(e(t)), )

where i(t), f(t) and o(t) are usually named the input, forget
and output gates, respectively. W) and WU denote the
weight matrices for gate j for the word input and the previous
hidden layer, respectively. The bias vectors for the respective
gates are denoted by b7 . Since we use vector notation, all the
operators in the above equations are element-wise operators,
which means o(-) is the element-wise sigmoid, tanh(-) is the
element-wise hyperbolic tangent and ® is an element-wise
multiplication.

h(t) is followed by a linear layer and the softmax function
to calculate the probability for the next word w(¢ + 1)

@(t + 1) = softmax(V ™ h(t) + bV")), (3)

where V™) and V") are the weight matrix and the bias
vector, respectively.

B. Feature-Based Domain Adaptation with LHN

As a baseline for bias-based adaptation, we use domain
adaptation with an LHN. This method was first proposed
for the model-based adaptaion of vanilla RNN-LMs [5]. The
authors used the LHN to add a domain dependent bias to
the output of the RNN. The bias was given by the one-hot
encoding of the domain label transformed by a linear layer as
input into the LHN. In our case, however, there is no domain
label given in the corpora used in our experiments and we
want to focus on feature-based domain adaptation methods. To
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indicate the difference from the previously proposed model-
based domain adaptation with LHN, we denote this method
by fLHN. As adaptation features, we use features calculated
from an LDA topic model.

Figure 1 (b) shows an fLHN. The LDA features a(t) are
transformed by a linear layer with weight matrix V@ and
bias vector b'Y'*). The output of the LSTM h(t) is also
transformed by a linear layer with weight matrix V™) and
bias bV""). The outputs of these two linear layers are added
at the input of the LHN

dpias(t) = VOOR) + VY L V@) + 5V (9)

Equation (9) shows that an LHN adds a topic dependent bias
term (V®a(t) + b)) to the output of the LSTM. The
output of the LHN is followed by a linear layer V' and the
softmax function to calculate the probability for the next word
W(t+1)

W(t + 1) = softmax(Vdpias(t) + b™)). (10)

This is called a linear hidden network because there is no
subsequent non-linear transformation. The LDA features are
input into the LHN during network training and evaluation.

III. PROPOSED FEATURE-BASED DOMAIN ADAPTATION
WITH LHUC

Model adaptation with LHUC was first introduced for
acoustic model adaptation in ASR. Recently, it has also been
applied to vanilla RNN-LMs [8] and has been shown to
reduce PPL and WER compared with a vanilla RNN-LM. In
[8], the adaptation was applied as a model-based adaptation
to the RNN. Because we focus on feature-based adaptation,
we cannot use the conventional LHUC. Instead, we use the
feature-based LHUC approach (fLHUC)!. This is the first
time that the use of fLHUC has been proposed for LM
adaptation. In our proposed approach, the adaptation weights
are calculated from auxiliary features. We apply LHUC after
a linear layer behind the LSTM as shown in Figure 1 (c).

R (t) is used as a gate for the output of the LSTM

diauc(t) = (V™h(t) + V) o ™ (1), (1

where ©® denotes an element-wise multiplication of two vec-
tors. The adaptation parameters in h® (t) are calculated from
the LDA features as follows

R (1) = 20(Ua(t) + V). (12)

U™ and bV"® are the weight matrix and bias vector of the
linear layer for the LDA features. b () has values between
[0;2] and it can be interpreted as the context dependent gating
of the units in the adaptation layer. Because the sigmoid non-
linearity will set certain nodes at zero, the authors in [6] used
the weighting by a factor of two after the sigmoid. This should
ensure that the activation on the input of each node in the
following layer remains at the same magnitude. The output of

IFor acoustic model adaptation this is also known as subspace LHUC [7].
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Fig. 1: (a) A conventional LSTM-LM, (b) LSTM-LM adaptation with linear hidden network (fLHN), (c) LSTM-LM adaptation
with LHUC (fLHUC) and (d) LSTM-LM adaptation with LHUC and bias adaptation (fLHUCB).

the adaptation layer is followed by the output layer and the
softmax function

W(t + 1) = softmax(Vdpuuc(t) + b)), (13)
The structure we use for the adaptation layer is identical
to an LHN. An advantage of using an LHN rather than an
adaptation of the LSTM output is that this layer can be used
as a compression layer to reduce the number of parameters.

IV. COMBINATION OF LHUC AND BIAS-BASED DOMAIN
ADAPTATION FOR LSTM-LMs

The paradigm mainly used for NN-LM domain adaptation
in the literature is bias adaptation. With the model shown in
Figure 1 (d) we present an approach that combines bias adap-
tation and our proposed fLHUC. The model is a combination
of the models described in Section II-B and Section III. We
employ the addition of both adaptation layer outputs before
the softmax function.

dive(t) = (V) + bV Y) © A1)
dpias(t) = VR + bV 4 V@ g(t) + oV

W(t + 1) = softmax(V (druuc(t) + diias(t)) + b™)).
14

Bias adaptation has been shown to be effective in model-
and feature-based domain adaptation methods and with fL-
HUCB we can also make use of this adaptation mechanism.
As a result, by using fLHUCB we can combine the advantages
of both bias adaptation and fLHUC in a single model.

V. EXPERIMENTS

A. Dataset

1) TED Talks: In our experiments on the TED talks dataset,
we used the TED-LIUM corpus [20] for ASR experiments.
Our ASR system was based on the standard Kaldi [19] recipe.
We trained a deep neural network acoustic model without
any sequence discriminative training. To train the LMs, we
used an enhanced dataset consisting of subtitles crawled from
further TED talks. In total we crawled subtitles from 2494
talks. The resulting training set had a size of 5.1M tokens
with a vocabulary size of 73K words. The vocabulary was
thresholded to include only words that appeared more than
once. This resulted in an effective vocabulary size of 43K
words.

We used our own validation and test sets when training our
LMs. We denote this evaluation set as the subtitle-based test set
in this section. The order of the talks in the subtitle-based sets
was the same as in the IWSLT 2011 evaluation campaign [22].
For consistency, we generated our datasets from the original
subtitles in the same way as our 5.1M word training set. In
the experimental result section, we will report results for the
subtitle-based test set and the Kaldi recipe’s test set.

To obtain verbatim transcriptions, the authors of the TED-
LIUM corpus re-transcribed the talks for the validation and
test sets. This introduced a mismatch with the subtitle-based
set. A major difference is in the sentence length. As a result,
the unigram probabilities of the end of sentence symbol *EoS’
are very different in the subtitle-based test set (P(EoS) = 0.1)
and in the TED-LIUM test set (P(EoS) = 0.04).
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2) CSJ: For the experiments with CSJ we also used the
publicly available Kaldi recipe. The implementation for the
acoustic model was the same as for the experiments with
TED talks, namely Karel’s DNN. Also for CSJ, we trained a
deep neural network speech recogniser without any sequence
discriminative training. The training data for our LMs were
the same as those used for the LMs in the CSJ recipe. The
training set had approximately 8.2M words. The vocabulary
size was 71K and became 44K after retaining only words that
appeared at least twice. The validation set we used during
model training was the same as that used for training the LMs
in Kaldi’s CSJ recipe, namely the first 10K utterances of the
training data.

B. LDA Training and Topic Estimation

To train our LDA topic model, we used each talk in the
training sets as a separate document. Before training the LDA,
we removed a list of common stopwords, and also high and
low frequency words. We applied this preprocessing soley in
order to train the LDA and to compute the LDA features.
We used the LDA implementation in scikit-learn [23] for our
experiments.

To calculate the LDA features for each word in the dataset,
we used features from an LDA with 50 topics extracted
from a sliding window covering the previous 200 words. The
LDA features represent the topic distribution over this sliding
window. In the ASR experiments, we calculated the LDA
features from the 100-best lists. When the context window
spans multiple utterances, we keep the context of the 1-best
hypothesis in the context window.

C. NN-LM Training Parameters

The networks in our experiments were single-layer LSTMs
with 300 units. The LHN also had 300 units. We trained
all the networks for 40 epochs on TED and 20 epochs on
CSJ. The results given below were chosen from the best
model on the validation set. We chose a mini-batchsize of
128 and a backpropagation through time length of 20 words.
The learning rate was 0.1 and we used the AdaGrad optimiser
[24]. Gradients were clipped to an L2-norm of 5. In all our
models, we applied dropout [25] with a dropout ratio of 50%.
To implement our models, we used the open source toolkit
Chainer [26].

D. TED Talk Results

For the TED talks, we chose to use a context window size of
200 words and an LDA size of 50. Table I shows our results
for PPL. and WER after 100-best rescoring. The results for
the trigram were obtained with the trigram distributed with
the Kaldi recipe [27]. All the parameters for rescoring, that is
the language model weight and trigram interpolation weight,
were tuned on the validation set.

fLHN reduced the PPL by 14% and 18% for the subtitle-
based and TED-LIUM test sets, respectively, compared with
the LSTM-LM baseline. The PPL we achieved with fLHN
on the TED-LIUM test set was the lowest of all models we

12-15 November 2018, Hawaii

TABLE I: PPL and WER for our own subtitle-based test set
and TED-LIUM. LDA features were calculated from an LDA
with 50 topics and a 200-word window size. The trigram
result represents the 1-best result and the results for the neural
network LMs are for 100-best rescoring.

Model Test WER|[%]
subtitle | TED-LIUM val test
trigram 156.41 222.05 16.3 | 15.1
LSTM 51.98 156.29 142 | 12.1
fLHN 44.72 127.99 14.1 | 12.1
fLHUC 46.98 135.68 140 | 119
fLHUCB 38.65 133.46 139 | 11.8

TABLE II: PPL and WER for CSJ using topic features from 50
LDA topics and a 200-word window size. The trigram result
is the 1-best result and the neural network LM results are for
100-best rescoring.

Model Test 1 Test 2 Test 3
PPL WER PPL WER PPL WER
trigram 82.45 | 12.26 | 89.17 9.34 94.89 | 12.22
LSTM 40.52 | 10.71 | 41.79 8.08 41.01 | 1049
fLHN 39.66 | 10.59 | 41.07 7.94 41.29 | 10.63
fLHUC 38.90 | 10.62 | 40.40 7.93 39.94 | 10.38
fLHUCB | 38.79 | 10.55 | 39.37 7.85 39.74 | 10.36

investigated. However, we did not observe any reduction in
WER compared with the LSTM-LM baseline.

With our proposed fLHUC, the PPL decreased relative by
10% and 13% for the subtitle-based test set and TED-LIUM
test set, respectively. The WER reduction on the test set was
2% relative compared with the LSTM-LM baseline. The WER
reduction with our fLHUC constitutes a greater improvement
than realised for model-based LHUC adaptation in previous
research and shows that LHUC-based domain adaptation can
be successfully applied as a feature-based adaptation method.

The combination of bias and gating based domain adap-
tation in fLHUCB reduced PPL by 26% and 15% compared
with the LSTM baseline. For the TED-LIUM test set, the PPL
was between that of fLHN and fLHUC. This shows again
the different characteristics of training and test data. We did
observe a relative WER reduction of 2.5% compared with the
LSTM-LM baseline on the test set. The PPL reduction on the
subtitle based test set was the highest of all models. This shows
that both methods have complementary information that helps
to improve the performance in a matched setting.

E. CSJ Results

CSJ consists of a training set and three test sets, but there is
no dedicated validation set. For parameter tuning for 100-best
rescoring, we chose test 3 as a validation set. We used the
same window size of the last 200 words and the same LDA
size of 50 topics to calculate the LDA features as for the TED
talk experiments. Table II shows the PPL and WER for all
three test sets. Using an LSTM-LM reduced the trigram PPL
by more than 50% and led to an improvement in 100-best
rescoring.

With feature-based domain adaptation, we achieved an av-
erage relative PPL reduction of 3% compared with the LSTM-
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LM baseline. This was much smaller than the 10% or higher
relative reduction with the TED talks, but the baseline LSTM-
LM already had a lower PPL for CSJ than for the TED talks.
fLHN reduced the WER around 1% relative to the LSTM-LM
in test 1 and test 2.

Our proposed fLHUC reduced the PPL by 3% to 4% relative
to the LSTM-LM baseline. The relative WER reduction was
between 1% to 2%. It achieved a consistent WER reduction
across all test sets compared with the LSTM-LM baseline.

fLHUCB had the lowest PPL of all NN-LMs in all test sets.
The PPL was reduced by 3% to 6% relative to the LSTM-LM
baseline. WER was reduced relative by 1% and 3% in test 1
and test 2, respectively. Compared with the 1-best decoding
result with a trigram LM, the WER was reduced 14%, 16%
and 15% relatively for test 1, test 2 and test 3, respectively.
The CSJ data are much better matched between training and
test data than the TED talks dataset. Our numbers show that
in this case fLHUCB achieved a consistent improvement over
fLHN or fLHUC.

VI. CONCLUSION

We presented an approach for LHUC-based domain adap-
tation in NN-LMs in an unsupervised setting and showed its
effectiveness in two common ASR tasks. With our application
of LHUC for feature-based adaptation, we achieved a larger
relative reduction in WER than in previous research. The
method successfully benefited from topic information provided
by an LDA topic model and consistently improved on the
baseline LSTM-LM.

We also presented a simple approach for combining LHUC
with bias adaptation. With matched training and test con-
ditions, this method performed better than bias and LHUC
based domain adaptation. This shows that bias and gating
have complementary information that can help to improve
performance.

Unlike earlier research, our approach does not need any
domain annotation in the corpus and can therefore be applied
to many corpora. In addition, since we use feature-based
domain adaptation, we do not require a specific model for
each domain and instead have only a single model covering
all domains.
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