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Abstract—This paper discusses a stability-oriented vocoder
based on Gabor wavelet approximation of the source signal for
statistical speech synthesis. In conventional vocoders with recur-
sive filters, the filter gain characteristics often cause degradations
in the sound quality due to unstable behavior of recursive filters
affected by sharp resonances driven by a particular overtone
in the excitation signal. To cope with this problem, we have
proposed Composite Wavelet Model (CWM) to avoid filter-
caused problems and have made several improvements as a
vocoder. Based on non-recursive filters, it enables synthesizing
stable speech which is robust to changes in F0 parameter. In
this paper, we further discuss the optimal number of mixture
components to improve the synthetic speech quality to determine
them through subjective experimental evaluations and report
them on the result of incorporating in an HMM-based speech
synthesis system. Objective experimental evaluations confirmed
the improved stability in the amplitude of the synthetic speech.

I. INTRODUCTION

In the statistical approach toward text-to-speech synthesis,

the waveform generation part, which is often referred to

“vocoder,” plays an important role as well as acoustic mod-

els. The vocoder generates speech waveforms from acoustic

features obtained through statistical training. It is desirable

to have vocoders synthesize high quality voices from the

speech parameters and be robust to artificial changes in the

parameters, so that TTS systems with vocoder can synthe-

size stable speech under the parameters not included in the

training data, and that users can process the synthetic speech

according to their preference. For these reasons, although new

approaches to speech synthesis called “end-to-end models”

which generates a speech waveform directly from an input text

by training the interrelationship between linguistic features and

speech waveforms have been proposed [1], a speech synthesis

system using a vocoder is still useful.

In statistical speech synthesis, Mel-Frequency Cepstral Co-

efficients (MFCCs) and Mel-Log Spectrum Approximation

(MLSA) filters [2] are often used as acoustic features for

statistical training and waveform synthesis filter from MFCCs.

MLSA filter approximates logarithmic amplitude spectra and

synthesizes a speech from MFCCs and F0 parameters using

recursive filters. However, the use of the recursive filters in

speech synthesis may suffer from unexpected large amplitudes

of the generated waveform in the case of sharp resonances

in the spectral envelope lying on one of the overtones of

the excitation source and cause near-oscillation behaviors. It

was shown in a previous study by Hamada et al. [3] that

generating a signal waveform from a power spectrum without

Fig. 1. GMM approximation of spectral envelope at phoneme /i/ (K=10).

using recursive filters is effective as a means to solve this

problem.

On the other hand, we have proposed composite wavelet

model (CWM) [4] as an alternative of the vocoder which

is able to synthesize stable speeches and have utilized it in

speech synthesis. The speech waveform using CWM can be

regarded as convolution by non-recursive filters, its impulse

responses are short and it is reported that quality degradation

hardly occurs even for fluctuation of pitch. Hojo et al. [5]

tried entirely replacing the MFCC parameters with CWM

parameters both in the training and speech synthesis based on

Hidden Markov Model (HMM) [6] from the same motivation.

In this paper, we report the experimentally improved results

by using the composite wavelet model against the problem

caused by the gain characteristic of the recursive filter used in

the conventional HMM speech synthesis.

II. COMPOSITE WAVELET VOCODER

A. Acoustic feature extraction

This section describes how to extract acoustic features

from a speech signal and synthesize a waveform from the

parameters [4, 5]. Firstly, CWM approximates a speech spec-

tral envelope from the sum of the Gaussian distributions,

interpreted as a function of frequency. This means each

Gaussian distribution function roughly corresponds to a peak
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in a spectral envelope [7]. CWM is thus convenient for de-

scribing both the frequency and power fluctuations of spectral

peaks, because it is characterized by parameters. We use the

distributions’ means, variances and weights as the parameters

(in the following, these are called ”CWM parameters”) which

represent the spectrum. CWM approximates spectral envelopes

by minimizing the I-divergence between spectral envelope

and GMM sequentially using the auxiliary function approach

(Fig. 1). The I-divergence is defined as follows

I[Y ||F ] =
∑

ω,t

[Yω,t log
Yω,t

Fω,t

− Yω,t + Fω,t], (1)

where Yω,t, Fω,t denote measured and modeled spectral enve-

lope, respectively. Fω,t at time t is computed as follows.

Fω,t =

K
∑

k=1

wk
√

2πσ2
k

exp

[

− (ω − µk)
2

2σ2
k

]

, (2)

where K denotes the number of mixed Gaussians. Secondly,

CWM concatenates µk, σk, wk(k = 1, . . . ,K) and uses them

as the time series of the spectral features. In addition to that,

when GMM approximates the spectral envelope, the Gaussian

functions can fit to a single harmonic structure component,

which was observed in experiments. A solution is smoothing

the spectrum. Saikachi et al. extracted spectral envelopes using

a method of lag-windowed autocorrelation functions of speech

waveforms and applying a Fourier transformation to them.

In this paper, we obtained spectral envelopes from MFCCs

by a HMM based TTS system. We initialize the values of

µk for GMM estimation using the average of the spectrum

pair obtained by 2K order LSP analysis. The frequency of

the linear spectrum obtained from LSP is known to roughly

correspond to the formant. It is expected that the convergence

becomes faster compared to computation with randomly ini-

tialized values. For the variance σ we did experiments with

values from 10 to 50 in increments of 10, and found the value

of 10 to be optimal. This was chosen as the initial value.

B. Applying Time Transition Probability

In the extraction method mentioned in the previous sub-

section, extraction is performed independently for each frame.

The index of each Gaussian distribution function in the CWM

at one particular frame is not always consistent with that of

another frame. That may cause the problem that the GMM fails

to approximate some peaks of the spectrum which should be

present, or to capture the smooth trajectories of the formants.

Thus, we introduce the time transition probability of µk in

the CWM parameter. When µk at time t is µ
(t)
k , we assume

that the time transition of µ
(t)
k follows the normal distribution

whose mean is µ
(t−1)
k in the previous frame (3).

P (µ
(t)
k |µ(t−1)

k ) = N (µ
(t)
k ;µ

(t−1)
k , ν2k) (3)

The variance ν2k of each index k represents the extent of al-

lowed temporal fluctuation of µk. The introduction of this time

transition probability smoothes the extracted time variation of

Fig. 2. The result of the extraction of µk without the time transition model
(a Japanese sentence of A14 in the ATR-503 data set, K=10).

Fig. 3. The result of the extraction of µk with the time transition model (a
Japanese sentence of A14 in the ATR-503 data set, K=10, ).

the mean parameters. This smoothing preserves the continu-

ities of the formant frequencies. As a result of introducing a

transition probability model, the CWM extracts CWM param-

eters by minimizing the following objective function, which

represents the difference between an observed spectrogram and

a model spectrogram.

J [Y ||F ] = I[Y ||F ] +

K
∑

k

1

2ν2k

T−1
∑

t=1

(µ
(t+1)
k − µ

(t)
k )2 (4)

T is the total number of frames of the spectrum obtained

from speech. In the same method as [8], we introduce an

auxiliary function using Jensen’s inequality. Now the pa-

rameters except for µk are updated with Eq. (1) in 2.1.

µk = (µ
(1)
k , µ

(2)
k , · · ·µ(T )

k )T, which is the time series vector

of µk, is updated with the following equation considering the
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time transition model.

µ
∗

k
=

1

2
(Dk + Ek)

−1Fk, (5)

where

Dk =
1

2ν2k

{

D(i,j)
}

i,j
(i, j ∈ [1, T ]) (6)

D(i,j) =















1 (i = j = {1, T})
2 (i = j ∈ [2, T − 1])
−1 (|i− j| = 1)
0 (other),

(7)

Ek =
1

2σ2
k

{

E
(i,j)
k

}

i,j
(i, j ∈ [1, T ]) (8)

E
(i,j)
k =

{
∑

ω Y (ω, i)λk(ω, i) (i = j),
0 (i 6= j),

(9)

Fk =
1

σ2
k

(F
(i)
k )i, (i ∈ [1, T ]), (10)

F
(i)
k =

∑

ω

ωY (ω, i)λk(ω, i), (11)

where λk denotes an auxiliary variable in the auxiliary

function. Fig. 2 shows the result of the extraction of µk

without the time transition model. Fig. 3 shows the result of

the extraction of µk with the time transition model. The speech

sample used for extraction, the number of mixed Gaussians in

the GMM, as well as the initial values are the same. νk is set

so that the standard deviation of the time variation of µk is

almost constant on the mel-frequency axis. It can be confirmed

that the crossing of the index, which was often observed when

the time transition model is not introduced, is continuously

fluctuating due to smoothing of the time fluctuations of µk.

C. Waveform Synthesis from CWM Parameters

We describe a method of synthesizing speech waveforms

using CWM parameters. As a method to solve the problem of

the recursive filter mentioned in Chapter I, The FIR type filter

obtained from inverse Fourier transform of GMM envelope

approximation is used. Note that the inverse Fourier transform

of the Gaussian function is the Gabor function, which is

the product of the Gaussian function and the trigonometric

function, as follows.

1√
2πσ2

exp

[

− (ω − µ)2

2σ2

]

⇔ 1√
2π2

exp

[

−σ2t2

2
+ jµt

]

,

(12)

where ω, µ and σ can be regarded as frequency, peak fre-

quency and Q-factor respectively mentioned in Chapter II.A.

By using this property, we apply inverse Fourier transfor-

mation of GMM and obtain the fundamental waveform of the

Gabor wavelet. In the voiced segments, the speech waveform

is obtained by arranging the fundamental waveform of the

Gabor wavelet at intervals corresponding to the fundamental

frequency in the time domain, which is equivalent to driving

the FIR filter with an impulse train corresponding to the

fundamental frequency. The synthesis of the unvoiced section,
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Fig. 4. An overview of TTS system based on HMM and CWM.

considering its aperiodicity of the waveform, is realized by

arranging the fundamental waveforms at random intervals.

In CWM, since the speech waveform is synthesized directly

from the spectral envelope not using recursive filters, it can

be expected that the problem caused by the gain characteristic

of the recursive filter does not occur. In our previous study

[5], CWM was used both for generating a series of the

spectral envelope and for waveform synthesis. In this paper,

we focus on its aspect of waveform generation and combined

it with HMM-based speech synthesis as a generator of cepstral

features.

III. SPEECH SYNTHESIS BY HMM AND CWM

A. Outline of the CWM speech synthesis

Combining the CWM vocoder with the existing HMM-

based TTS system (Fig. 4), the proposed procedure is outlined

as follows.

1) Give an input text to a HMM-based TTS system (e.g.,

HTS (HMM-based text-to-speech system) by Zen etal .)
[9] to produce a mel-cepstrum vector sequence along

with the F0 trajectory. to produce a mel-cepstrum vector

sequence along with the F0 trajectory

2) Convert the obtained mel-cepstrum coefficients into the

linear spectra.

3) Generate the waveform from the linear spectra by the

method of section II.

These steps are stated in more details below.

B. Generation of cepstral feature and F0

For the input text, HTS generates a sequence of cepstral

coefficient vectors along with fundamental frequencies. In the

waveform synthesis part, HTS originally uses the MLSA filter.

whereas CWM is used in this research instead.
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C. Conversion from MFCCs to spectrum

The generated MFCCs are converted into spectrum as

follows.

H(ω) = s−1
γ (

M
∑

m=0

˜cγ(m)e−jω̃t) (13)

s−1
γ (ω) =

{

(1 + γω)(1/γ) (0 < |γ| ≤ 1)
expω (γ = 0),

(14)

ω̃ = tan−1 (1− α2) sinω

(1 + α2) cosω − 2α
(15)

,where H(ω) denotes the spectrum, sγ
−1 the inverse func-

tion of the generalized logarithmic function, cγ the mel-

frequency cepstrum coefficient (MFCC) [10].

D. Speech waveform synthesis by CWM

The method of synthesizing speech waveforms using the

CWM features and the fundamental frequency information is

similar to the method mentioned at section II.

IV. DECISION OF THE NUMBER OF MIXTURE COMPONENTS

In conventional research related to CWM, it has not been

specifically mentioned how many Gaussian functions approx-

imating the spectral envelope are required to synthesize the

best quality speech. Therefore, we determined the number of

Gaussian functions in a subjective evaluation experiment as

follows.

A. Experimental conditions

To investigate the quality of synthesized speech, listening

tests were conducted. The number of mixed Gaussian function

was changed from 15 to 40 in increments of 5. We selected

five sentences of 3–5 seconds of duration from the ATR

speech database [11]. HTS was used to generate MFCC

vector sequences and F0 trajectories under the HTS conditions:

γ = 1.0, α = 0.55, and the sampling frequency 16 kHz.

Ten men and women in their teens to twenties participated in

the experiment using their headphones or earphones that they

regularly use. The experiment was conducted in a quiet room.

B. Result

Figure 5 shows that the sound quality is highest when using

25, 30, or 35 Gaussian functions in the mixture. As the number

of parameters becomes smaller, the time taken to update the

GMM becomes shorter, so we conclude that 25 is the most

suitable number of Gaussian functions for CWM.

V. OBJECTIVE EXPERIMENTAL EVALUATION

We investigated the gain characteristics (amplitude devia-

tions) of synthetic speech to investigate whether the speech

synthesis method by the CWM is effective or not in accordance

with the experiment of [4]. In the comparison, characteristics

of synthesized speech by MLSA filter were investigated.

Fig. 5. An overview of TTS system based on HMM and CWM.

Fig. 6. Amplitude deviations in MLSA filter synthesis.

A. Experimental conditions

To investigate changes in gain with changes in F0, the F0

parameters were modified from 0.8 to 1.2 times of the original

with the interval of 0.05 under the same conditions as Section

IV. We approximated the spectra by GMM with the number

of mixture components = 25.

Fig. 7. Amplitude deviations in CWM synthesis.

B. Result

Since text-to-speech synthesis produces entirely new speech

that lacks the original reference speech to compare with,
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as in analytical synthesis [4], we explored the deviation of

amplitude caused by the change in fundamental frequency

of voiced sounds using the difference between the maximum

value and the minimum value of the gain of the frame.

The results of comparing the amplitude characteristics are

shown in the histograms in Figures 6, 7. The horizontal axis

of the histograms represents the gain stability (i.e. amplitude

stability). From the figures, it is suggested that the speech

synthesis using the CWM is more stabilized in amplitude

control than the method using a MLSA recursive filter.

VI. CONCLUSIONS

In this research, we proposed the use of CWM speech

synthesis from cepstral features in the HMM-based text-to-

speech system. We converted the cepstral features generated

by HMM into spectrum and approximated it with GMM, i.e.

sums of Gaussian functions. Based on the mixture weights,

means and variances of the Gaussian functions obtained from

the approximation, the composite Gabor wavelets were peri-

odically and aperiodically concatenated to generate synthetic

speech. The subjective experimental result showed that the

CWM synthesized speech when the spectral envelope obtained

from MFCC was approximated by 25 Gaussian functions is

the most suitable. The objective experimental results showed

improved gain characteristics of synthetic speech. Future work

includes incorporating deep neural networks for improving the

synthetic speech quality and applying this technique to singing

voice synthesis.
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