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Abstract—The paper proposed a deep neural network (DNN)-
based Mandarin-Tibetan cross-lingual speech synthesis by adopt-
ing speaker adaptation training. The initial and the final are
used as the speech synthesis units for both Mandarin and
Tibetan to train a set of average voice model(AVM) based on
DNN from a large Mandarin multi-speaker corpus and a small
Tibetan one-speaker corpus. The speaker adaption is adopted to
train a set of speaker-dependent DNN models of Mandarin or
Tibetan appended with AVM. The Mandarin speech or Tibetan
speech is then synthesized by their respective speaker-dependent
DNN acoustic models. Both subjective evaluations and objective
tests show that synthesized Tibetan speech by the proposed
method are not only better than the traditional Hidden Markov
Model(HMM)-based method, but also better than the DNN-
based Tibetan speech synthesis with only Tibetan training corpus.
Mixed Tibetan training speech have little effect on the quality of
synthesized Mandarin speech. Therefore, the proposed method
can be applied to the speech synthesis of minority language with
rare speech resources.

I. INTRODUCTION

Multilingual speech synthesis has been a hot area of re-
search on speech synthesis for several years [1]. Because
multilingual speech synthesis can synthesize speech of same
or different speaker with only a speech synthesis system,
it has been extensively used in human-computer interac-
tion, bilingual education, spoken dialogue system and so
on. Generally speaking, there are two traditional methods to
realize cross-lingual speech synthesis. One is large corpus-
based unit selection waveform concatenation speech synthesis
method [2] [3] [4], which is difficult to record different
languages’s speech of one speaker. The other is the hidden
Markov model (HMM)-based statistical parametric speech
synthesis method [5] [6] [7], which can easily synthesize
voice of different speakers with speaker adaptation algorithms.
However, this kind of method traditionally uses shallow gaus-
sian mixture models (GMMs) to model the acoustic features
with greedy algorithm, so that the acoustic feature models are
suboptimum and the synthesized speech has a low naturalness.

Since 2010, deep learning techniques have been successfully
applied to the modeling of speech signals [8]. Inspired by
the successful application of deep neural networks(DNNs) to
speech recognition [9], DNNs have also been applied to statis-

tical parametric speech synthesis and achieved significant im-
provements [8]. The interaction between input context and out-
put acoustic features is modeled by a DNN In [10], which can
address some limitations of conventional HMM-based speech
synthesis approaches. Wang et al. [11] achieved DNN-based
speech synthesis on the basis of the HMM speech synthesis
framework to set up the speech spectrum conversion model
and the experiment proved that the method can effectively
improve the synthesized speech quality. Lu et al. [12] used
a vector-space representation of linguistic context as inputs
of DNN-based speech synthesis and probability distributions
over speech features as outputs of the network. Maximum
Likelihood(ML) parameter generation was used to generate
parameter contour, and then drove a vocoder to generate the
speech waveform. Fernandez et al. [13] proposed a hybrid
learning approach between DNN and Gaussian process(GP)-
based regression to predict logf0. DNN was first trained from
the raw inputs, and then the activations at the last hidden layer
were used as inputs for GP-based nonparametric regression.
Subjective and objective evaluation showed that this approach
can implement parametric synthesis for the prediction of
prosodic targets. Qian et al. [14] showed that DNN-based
speech synthesis with a moderate size corpus outperform the
HMM-based baseline, in particular the prosody. The weights
of DNN were trained by using pairs of input context and output
acoustic feature to minimize the errors between the mapped
output from a given input and the target output. Subsequently,
speaker adaptation techniques are used in DNN-based speech
synthesis. [15] implemented a preliminary work on speaker
adaptation for DNN-based speech synthesis was implement.
Average voice models (AVM) from multiple speakers record-
ings were created to train DNNs through performing a speaker
adaptive training (SAT). The result suggested that the adapta-
tion technique in the DNN-based speech synthesis approach
was superior to the standard feature transformations. Fan et
al. [16] proposed a new unsupervised multi-speaker adaptation
for DNN-based speech synthesis approach and it can achieve
comparable performance with supervised adaptation. Wu et
al. [17] augmented a low-dimensional speaker-specific vector
with linguistic features as input to represent speaker identity.
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Model adaptation was performed to scale the hidden activation
weights. Then a feature space transformation was conducted
at the output layer to modify generated acoustic features.

However, the state-of-the-art researches on speech synthesis
are focusing on major language [15] [16] [17], which obtain
plenty of data resources for model training, while it lacks
of studies on minority nationality language in cross-lingual
speech synthesis due to scarce speech resources such as
Tibetan [18] [19]. To the best of our knowledge, speaker
adaptation for DNN-based speech synthesis has not yet been
applied on the Mandarin-Tibetan cross-lingual speech synthe-
sis.

In this paper, we achieve a DNN-based Mandarin-Tibetan
cross-lingual speech synthesis by adopting speaker adapta-
tion training. According to the HMM-based speech synthesis
framework, DNN acoustic models are trained with a large
Mandarin multi-speaker-based corpus and a small Tibetan one-
speaker-based corpus to replace HMM-based acoustic models.
Firstly, we use a set of designed Speech Assessment Methods
Phonetic Alphabet(SAMPA) to label the pronunciation for
both Mandarin and Tibetan. A set of context-dependent label
format is designed to label the context information of Man-
darin and Tibetan. The initial and the final form the synthesis
units for both Mandarin and Tibetan. Secondly, average voice
model(AVM) based on DNN is trained using speaker adaptive
training from a large Mandarin multi-speaker corpus and a s-
mall Tibetan one-speaker corpus. Finally, the speaker adaption
is adopted to train a set of speaker-dependent DNN models
of Mandarin or Tibetan with AVM. The Mandarin speech or
Tibetan speech is then synthesized by their respective speaker-
dependent DNN acoustic models. The results show that the
proposed method can achieve a better Tibetan voice quality
than the method of paper [19].

II. FRAMEWORK OF DNN-BASED MANDARIN-TIBETAN
CROSS-LINGUAL SPEECH SYNTHESIS

The framework of the proposed DNN-based speech synthe-
sis consists of three parts including preparing training data
module, training DNN acoustic models module and synthe-
sizing speech module, as shown in Fig. 1. The Training DNN
acoustic module includes average voice model (AVM) training
and speaker adaptation.

III. PREPARING TRAINING DATA

We use linguistic features as input and acoustics features
as output to train the DNN-based acoustic models. Chinese
sentences and Tibetan sentences are selected to be the text
corpus. Speech corpus are recorded according to the corre-
sponding sentences by Mandarin subjects or Tibetan subjects
in sound-proof studio. Then we extract linguistic features from
the sentences and acoustic features from the recorders.

A. linguistic features

The paper adopt all initials and finals of Mandarin and
Tibetan, including silence and pause, as the synthesis unit.
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Fig. 1. Framework of DNN-based Mandarin-Tibetan cross-lingual speech
synthesis.

Since Tibetan and Mandarin have many similarities in pro-
nunciation [20], we design a set of SAMPA to label the pro-
nunciation of initials and finals for both Mandarin and Tibetan.
We also design a six level context-dependent label format for
labeling the context information of the speech synthesis unit
of Mandarin and Tibetan. The context-dependent label format
reflects the unit level, syllable level, word level, prosodic word
level, phrase level, and sentence level context information. We
developed a mix-lingual text analyzer to obtain the context-
dependent labels from both Chinese sentences and Tibetan
sentences. The linguistic features for the DNN acoustic model
training is obtained from the context-dependent label.

B. acoustic features

The acoustic features are extracted from the recorded speech
files. We use the WORLD vocoder to extract acoustic features
including the fundamental frequency (F0), the mel-generalized
cepstral (MGC), the band a periodical (BAP), and the voiced
/unvoiced decision. These acoustic features are used as the
output for DNN acoustic models training.

IV. TRAINING THE DNN ACOUSTIC MODELS

In this work, a speaker adaptation framework is employed
for training the DNN-based acoustic models proposed in [21].
Speaker-independent DNN model is trained as an average
voice model (AVM) with augmented i-vector to capture speak-
er identity. An i-vector represents speaker identity [22]. At the
adaptation phase, the target speaker’s i-vector is first estimated
by using the adaptation data, and then the i-vector, a gender
code and the context-dependent linguistic features are used as
the network input to generate the target speaker’s speech. DNN
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is set up via lots of hidden units hierarchically structured into a
sequence of layers for generating speaker-dependent acoustic
parameters. The linear discriminant analysis(LDA) is adopted
to obtain the best results.

A. training the average voice model

The paper trained a set of DNN models as the cross-
lingual AVM by using the linguistic features (binary and
digital) as input and acoustic features as output. The linguistic
features were obtained from context-dependent label of the
text corpus. The acoustic features were extracted from speech
corpus including MGC, BAP, F0 and voice/unvoiced (V/UV).
The DNN models share various hidden layers between dif-
ferent emotional speakers to model its language parameters.
Duration models and acoustic feature models were trained by
a stochastic gradient descent (SGD) [19] of back propagation
(BP) algorithm. Finally, a set of speaker indenpent AVM were
trained by the Mandarin and Tibetan multi-speaker corpus.

The paper used a DNN structure including an input layer, a
output layer and 3 hidden layer to train the AVM. The tanh
is used in the hidden layer and the linear activation function
is used in the output layer. All speakers’ training corpus share
the hidden layer, so the hidden layer is a global linguistic
feature mapping shared by all speakers. Each speaker has its
own regression layer to model its own specific acoustic space.
After multiple batches of SGD training, a set of optimal multi-
speaker AVM model (average duration models and average
acoustic feature models) is obtained.

B. Speaker adaptation

In the speaker adaptation stage, a small corpus of the target
languages(Mandarin or Tibetan ) of the target speaker is used
to extract acoustic features in the same way as AVM training,
including LogF0, MGC, BAP and V/UV. Firstly, the speaker
adaptation is performed by multi-speaker AVM model with the
DNN models of the target language to obtain a set of speaker-
dependent adaptation models including duration models and
acoustic feature models. The speaker-dependent model has
the same DNN structure as the AVM, using six hidden layer
structures, and the mapping function is the same as the AVM.

C. synthesizing speech

In the speech synthesis stage, we firstly obtain the context-
dependent labels from Mandarin sentences or Tibetan sen-
tences by the mix-lingual text analyzer. At the same time, the
maximum likelihood parameter generation (MLPG) algorith-
m [23] is used to generate the speech parameters from acoustic
models. At last, The WORLD vocoder is used to synthesize
speech from speech parameters.

V. EXPERIMENTS

A. Corpus and experiment conditions

We select seven female speakers’ recordings (169 sentences
per person) from EMIME bi-lingual speech database [24]
as Mandarin corpus, and record 800 Tibetan speech of a

native female Tibetan Lhasa dialect speaker as Tibetan train-
ing corpus. Tibetan sentences are chosen from recent years
Tibetan newspapers. All recordings are saved in the Microsoft
Windows WAV format as sound files (mono-channel, signed
16 bits, sampled at 48 kHz). There are 591- dimensional
input features of DNN in all, 482-dimensional features of
which are obtained from the context-dependent information,
including the contextual information of the synthesized units
(initials and finals) and their positions information in syllables,
words, prosodic words, prosodic phrases and sentences. 9-
dimensional features are internal locations information of the
synthesis units, including the position of the frame in the
HMM state and the synthesis units, the position of the state
in the forward-backward synthesis units, and the duration
of the HMM state and the synthesis units. The remaining
100-dimensional features are the MGC and the logF0 as
well as their first order difference(delta) and second-order
difference(delta-delta) extracted from the speech. State infor-
mation and frame alignment are obtained from force alignment
with five states per synthesis unit. The output features of neural
network are 109-dimension vectors, containing the MGC,
logF0 and their first order and second-order differences, as
well as the binary features of synthesis units.

Before the training, the input features are normalized to
[0.01 0.09] by the min-max method, and the output features
are normalized to the zero mean unit variance. In the stage
of synthesis, the maximum likelihood parameter generation
(MLPG) [25] is used to generate the smooth speech parameters
from the output of the non-normalized neural network, and
then the MGC is enhanced in the cepstrum domain by adopting
the spectrum enhancement method to improve the naturalness
of synthesized speech.

DNN is set to 5 layers, having 3 feed-forward hidden layers,
and 1024 neurons set for each hidden layer. Hyperbolic tangent
function is adopted in hidden layers and linear activation is
finished at the output layer. In the training AVM and speaker
adaptation stage, mini-epoch size is set to 256 and momentum
is used to accelerate convergence. For the first 10 epochs, the
momentum is fixed to 0.6 and then increased to 0.9. The fixed
learning rate of 0.0008 is used in the first 10 epochs of AVM-
DNN training. The speaker’s learning rate is set to 0.02 during
the speaker adaptation. The learning rate halved in each epoch
after 10 epochs and L2 regularization is applied to the weight
with 0.00001 penalty factor. Maximum number of epochs are
set to 25 for AVM-DNN training and the speaker adaptation.

In the experiments, 100 Tibetan speech are randomly se-
lected from 800 Tibetan speech corpus as test set, 10,100 and
700 Tibetan utterances are randomly selected respectively from
the remaining 700 Tibetan corpus to form 3 Tibetan training
sets. Simultaneously, all Mandarin recordings of seven female
speakers(7 people × 169 sentences) andTibetan training sets
are used to train the neural network.

In order to evaluate the quality of synthesized Mandarin
speeches and Tibetan speeches, we carry out 3 different
strategies with different training sets as shown below:

1) T: T indicates that DNN and HMM acoustic models
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are trained with three Tibetan training sets (10, 100,
700 Tibetan utterances) respectively. The DNN models
of Tibetan are labeled as: 10 (DNN), 100 (DNN), 700
(DNN). The HMM models of Tibetan are labeled as:
10T (HMM), 100T (HMM), 700T (HMM).

2) M: it means that all training corpora of only 7 female
Mandarin speakers are trained in DNN and HMM acous-
tic models. The DNN models are labeled as M (DNN).
The HMM models are labeled as M (HMM).

3) TM: TM represents that DNN and HMM acoustic
models are trained with all training corpora of 3 Ti-
betan training sets (10, 100, 700 Tibetan utterances)
respectively and 7 female Mandarin speakers. 10TM
(DNN), 100TM (DNN), 700TM (DNN) are the Tibetan
DNN models. The HMM acoustic models of Tibetan
are labeled as: 10TM (HMM), 100TM (HMM), 700TM
(HMM).

The HMM models in three different training sets (T, M, TM)
trained in this paper are the same as the three HMM models
(SD, SI, SAT) trained in [19] (T, M, TM are separately equal
with SD, SI, SAT). Each of the above mentioned 14 models
synthesizes 100 Tibetan utterances, totaling 1400 sentences
(100 sentences * 14 models). 20 sentences are randomly se-
lected from 100 synthesized Tibetan utterances of each model
for evaluation, amounting to 280 sentences (20 sentences *
14 models) as Tibetan testing set of evaluation. 20 Mandarin
speeches are synthesized form each of the M and TM models.
All synthesized Mandarin utterances are used as the Mandarin
testing set to evaluate the influence of synthesized Mandarin
with DNN and HMM acoustic models.10 native Tibetan Lhasa
dialect speakers and 10 Mandarin speakers are invited as
evaluation subjects.

B. Speech quality evaluation

The mean opinion score (MOS) is used to evaluate the
naturalness of synthesized Tibetan and Mandarin speech. All
selected testing sets are used to be evaluated. The synthesized
Tibetan test utterances of each model are randomly played to
the 10 Tibetan subjects except M models. We ask the subjects
to carefully listen to these utterances and score the naturalness
of every utterance by a 5-point score. Mandarin evaluation
method is the same as Tibetan evaluation.

Fig. 2 compares the average MOS scores of synthesized
Tibetan speech and synthesized Mandarin speech with differ-
ent methods. We can see from the results that the MOS score
of synthesized Mandarin speech with both the HMM-based
method and the DNN-based method in TM strategy tend to
be stable with the increase of Tibetan training corpus. This
means that mixing Tibetan training corpus does not affect
the quality of synthesized Mandarin speech. The scores of
synthesized Tibetan speech by each TM strategy and T strategy
increase with the increase of Tibetan training sentences. At
the same time, The scores of Tibetan with TM strategy
outperform that of the T strategy. This means that mixing
Mandarin training sentences is helpful for the naturalness of
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Fig. 2. The average MOS scores of synthesized Tibetan speech and Mandarin
speech with different methods and training set under 95% confidence intervals.

synthesized Tibetan speech. The scores of DNN-based syn-
thesized Tibetan with TM strategy are higher than that of the
HMM-based method, which indicates that the proposed DNN-
based Mandarin-Tibetan bilingual speech synthesis method is
superior to the traditional HMM-based method in improving
synthesized speech quality. For 10 Tibetan training utterances,
the MOS score of synthesized Tibetan speech with the DNN-
based method is greater than that of the HMM-based method
in TM strategy. It indicates that the naturalness of synthesized
Tibetan speech with the DNN-based method is better than that
of the HMM-based method when mixing a small amount of
Tibetan training corpus to the mixing corpus. It shows that
proposed method is superior to the conventional HMM-based
speech synthesis method in improving the speech quality of
synthesized speech especially in the case of small Tibetan
training corpus.

C. Speech similarity evaluation

We use the degradation mean opinion score(DMOS) to
evaluate the speech similarity of synthesized Tibetan utter-
ances and Mandarin utterances. In the DMOS evaluation, all
the original recordings and the synthesized testing utterances
(Tibetan and Mandarin) of each model are used. Each of the
synthesized speech and its corresponding original recording
form a pair of speech file. We randomly play each pair of
speech files to the corresponding subjects with the order of the
original speech followed by synthesized speech. The subjects
are asked to carefully compare two speech files and evaluate
the similarity of the synthesized speech to the original speech
at 5-point score. The score 5 represents the synthesized speech
is very close to the original speech while the score 1 represents
the synthesized speech is very different from the original
speech.

Fig. 3 compares the DMOS scores of synthesized speech
by using different Tibetan training sets, in which the syn-
thesized Tibetan speech and synthesized Mandarin speech
are selected from each model of the 3 strategies (T, M,
TM). We can see from Fig. 3 that the DMOS scores of
synthesized Tibetan speech without mixing Tibetan training
corpus are close to those of the synthesized Tibetan speech
by only 100 Tibetan training sentences. The DMOS score
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of synthesized Tibetan with TM strategy is higher than that
of T strategy for a certain Tibetan corpus, which indicates
that when mixed Mandarin-Tibetan bilingual corpus is used
to synthesize Tibetan, the speech similarity of synthesized
Tibetan speech can be improved by sharing the units of
Mandarin. For the 10 and 100 Tibetan training sentences, the
score of DNN-based synthesized Tibetan is higher than that of
the HMM-based method in TM strategy, which shows that the
proposed method is preferable to the HMM-based method with
a small amount of Tibetan training corpus. With the increase
of Tibetan training corpus, the DMOS scores of synthesized
Mandarin speech have not changed much. This means mixed
Tibetan training corpus has little effect on the naturalness of
synthesized Mandarin speech.

D. Objective evaluation

Root Mean Square Error (RMSE) analysis of duration
and fundamental frequency are performed on all synthesized
Tibetan and Mandarin speech. Table I and Table II show
the RMSE of the duration and fundamental frequency of
synthesized Tibetan speech by each model of the 3 strategies.
Because the duration of the DNN-based method is consistent
with that of the HMM-based method, we can see from the
two tables that the RMSE of the duration are same on the
synthesized speech for both Tibetan and Mandarin by the
two methods. The RMSE of fundamental frequency whit the
DNN-based method are small than that of the HMM-based
method for both Tibetan and Mandarin, which indicates that
DNN-based method is superior to the HMM-based method
in modeling acoustic features. We also can see from Table I
that with the increase of Tibetan training sentences, the
RMSE of duration and fundamental frequency of synthesized
Tibetan speech with mixed Mandarin and Tibetan training
sentences(for example for TM strategy) is lower than those
of synthesized Tibetan speech only with Tibetan training
sentences( for example T strategy). This means that the mixing
Mandarin training sentences can improve the voice quality
of the synthesized Tibetan speech. From Table II, we can
see that with the increase of Tibetan training sentences, the
RMSE of duration and fundamental frequency of synthesized

TABLE I
RMSE OF DURATION AND FUNDAMENTAL FREQUENCY FOR

SYNTHESIZED TIBETAN SPEECH.

Tibetan
models

durRMSE (s) f0RMSE (Hz)
HMM DNN HMM DNN

M 12.49 12.49 17.78 17.58
10T 15.89 15.89 25.90 25.73
100T 15.03 15.03 28.72 25.82
700T 14.99 14.99 24.45 23.11
10TM 15.47 15.47 25.58 12.28
100TM 14.86 14.86 16.94 11.82
700TM 13.01 13.01 16.18 11.44

TABLE II
RMSE OF DURATION AND FUNDAMENTAL FREQUENCY FOR

SYNTHESIZED MANDARIN SPEECH.

Mandarin
models

durRMSE (s) f0RMSE (Hz)
HMM DNN HMM DNN

M 7.46 7.46 15.21 10.12
10TM 7.96 7.96 21.28 17.65
100TM 7.70 7.70 19.50 17.62
700TM 7.41 7.41 19.45 17.50

Mandarin speech on TM strategy is gradually reduced, which
indicates that mixing Tibetan training corpus is also can
improve Mandarin speech synthesis.

VI. CONCLUSIONS

On the basis of the traditional HMM-based Mandarin-
Tibetan bilingual speech synthesis, the paper proposes a
DNN-based method to realize Mandarin-Tibetan cross-lingual
speech synthesis. The experimental results show that syn-
thesized speech by the method is better than that of the
HMM-based method. At the same time, adding Mandarin
training corpus can improve the quality of the synthesized
Tibetan speech. It indicates that this method can be used
to realize a Mandarin-Minority language cross-lingual speech
synthesis with a small amount of training corpus of Minority
language by the mature Mandarin speech synthesis framework.
Further work will attempt to improve the synthesized speech
quality of DNN-based method by using multi-speaker-based
speech database including males and females speakers and
implementing speaker adaptive transformation in DNN model.
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