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Abstract—Complex-valued neural networks (CVNNs) are well
suited to speech signal processing because they can naturally
represent amplitude and phase. In this paper, we explore applying
an acoustic model with multiple complex-valued layers (multiple-
CVNN-AM) and spliced features to speech recognition. First,
we focus on multiple-CVNN-AM with unspliced input features
and investigate an appropriate architecture from the viewpoint
of the activation function, bias, and number of complex-valued
layers. We also propose batch amplitude mean normalization for
more quickly and stably training complex-valued layers. We then
investigate an appropriate architecture for multiple-CVNN-AM
with spliced input features and compare it with a real-valued
neural network acoustic model without complex-valued layers
(RVNN-AM) and complex linear projection (CLP) models, which
can be considered acoustic models with single complex-valued
layers. We show that under noise conditions, multiple-CVNN-
AM outperforms RVNN-AM and CLP models by up to 7.45%
and 11.90%, respectively.

I. INTRODUCTION

Complex-valued neural networks (CVNNs) are neural net-
works that deal with complex-valued features [1]. CVNNs
have better generalization characteristics [2] and potential to
enable faster learning [3-5] . Furthermore, CVNNs are well
suited to speech signal processing where complex values are
often used through fast Fourier transform (FFT), because
CVNNs can naturally represent amplitude and phase. CVNNs
have previously been shown to be effective in spectrum
prediction [5], source localization [6], and automatic music
transcription [7]. In this paper, we focus on applying CVNNs
to acoustic modeling for speech recognition.

Recently, Variani et al. proposed complex linear projec-
tion (CLP) [8]. CLP processes FFT features by inserting a
complex-valued linear layer (called a CLP layer) between
a complex-valued input and a real-valued neural network
acoustic model (RVNN-AM). FFT features are unspliced;
that is, CLP processes one frame of FFT features. A CLP
layer plays the role of filtering the input signal. The model
obtained via joint training of the CLP layer and the RVNN-AM
achieves superior performance as compared with the RVNN-
AM without the CLP layer, whose input is log Mel-filterbank
energy features.

The CLP layer can be considered as a single complex-valued
layer. As mentioned above, acoustic models with a single
complex-valued layer (single-CVNN-AM) and unspliced input
features have been explored. However, to the best of our
knowledge, no acoustic models with multiple complex-valued

layers (multiple-CVNN-AM) and spliced input features have
been explored.

In this paper, we explore applying multiple-CVNN-AM
with spliced features to speech recognition and an architec-
ture for complex-valued layers that is appropriate to speech
recognition. We propose batch amplitude mean normaliza-
tion (BAMN) to train complex-valued layers more quickly
and stably. We show that the multiple-CVNN-AM approach
outperforms RVNN-AM and single-CVNN-AM under noise
conditions.

The remainder of this paper is organized as follows. In
section II, we describe a typical CVNN architecture for
acoustic models and BAMN. In section III, we focus on
multiple-CVNN-AM with unspliced input features. We inves-
tigate activation functions appropriate to speech recognition,
the necessity of bias, and how many complex-valued layers
are needed. We also evaluate the effectiveness of BAMN. In
section IV, we compare multiple-CVNN-AM with RVNN-AM
and single-CVNN-AM under the condition that input features
are spliced. We show that multiple-CVNN-AM outperforms
the RVNN-AM and single-CVNN-AM models. We also inves-
tigate appropriate architectures for multiple-CVNN-AM with
spliced input features. Section V concludes this paper.

II. COMPLEX-VALUED NEURAL NETWORK FOR ACOUSTIC
MODEL

A. Typical CVNN Architecture for Acoustic Model

Fig. 1 shows a typical structure for a multiple-CVNN-AM
architecture in an acoustic model. There are three layers in

������������������������

�������������������������������������������� ����

������������ ��������

������������ ��������

������������������������������������ ����

���������������� ������������������������

��������������������

Absolute

Real-valued layers

Absolute layer

Complex-valued 
layers

Output layer

Input layer

Fig. 1. Typical multiple CVNN architecture for an acoustic model.
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a multiple CVNN: complex-valued, absolute, and real-valued
layers.

The complex- and real-valued layers process and produce
complex- and real-valued inputs, respectively.

An acoustic model using deep neural networks produces
posterior probabilities over hidden Markov model states. Con-
sequently, output from multiple-CVNN-AM must be real-
valued. In this paper, we introduce an absolute layer between
the complex- and real-valued layers. The absolute layer out-
puts absolute values resulting from complex-valued inputs and
propagates these output values to the next real-valued layer.

Complex- and real-valued layers are optimized through
complex-valued back propagation [9] and real-valued back
propagation [10], respectively.

B. Activation Functions for CVNN

Several complex activation functions have been proposed
in the literature [11-15] . These active functions are mainly
classified into the following three types.

• Real–imaginary function

zout = σR(ℜ[zin]) + iσR(ℑ[zin]). (1)

• Phase-amplitude function

zout = σR(|zin|) exp(i arg(zin)). (2)

• Complex function

zout = σC(z
in). (3)

Here, zin ∈ C and zout ∈ C denote an activation function’s
input and output, respectively, σR(·) denotes a real-valued
function such as a sigmoid or a complex function, and σC(·)
denotes, for example, a complex sigmoid [11]. In this paper,
we focus on real–imaginary and phase–amplitude functions.

C. Batch Amplitude Mean Normalization

Batch normalization [16] helps accelerate and stabilize a
training neural network by reducing internal covariate shift.

Conventional batch normalization involves the following
steps. Let a mini-batch B of size m be B = {x1...m} ∈ R,
and let the normalized values be x̂1...m ∈ R. Then,

µB =
1

m

m∑
n=1

xn,

σ2
B =

1

m

m∑
n=1

(xn − µB)
2,

x̂n =
xn − µB√
σ2
B + ϵ

,

where ϵ ∈ R is a constant added to the mini-batch variance
for numerical stability and n = 1, 2, ...,m. After normalizing
the mini-batch, the normalized values are scaled by γ ∈ R and
shifted by β ∈ R. The output of batch normalization xBN

n is
therefore

xBN
n = γx̂n + β.

However, the standard formulation of batch normalization
applies only to real values.

Trabelsi et al. proposed complex batch normalization [7],
which takes a whitening two-dimensional vectors approach.
Complex batch normalization can be performed by multiplying
zero-centered data by the inverse square root of the covariance
matrix.

Let a complex-valued mini-batch B of size m be B ={[
x1

y1

]
,

[
x2

y2

]
...

[
xm

ym

]}
∈ R2×1. Here, xn and yn

(n = 1, ...m) denote the real and imaginary parts of the nth

components, respectively, and
[

x̂1

ŷ1

]
...

[
x̂m

ŷm

]
denotes the

normalized values.

µB =
1

m

m∑
n=1

[
xn

yn

]
,

VB =

(
Cov(x1...m, x1...m) Cov(x1...m, y1...m)
Cov(x1...m, y1...m) Cov(y1...m, y1...m)

)
,[

x̂n

ŷn

]
= (VB)

− 1
2

([
xn

yn

]
− µB

)
.

After normalizing the mini-batch, the normalized values are

scaled by γ =

(
γrr γri
γri γii

)
∈ R2×2 and shifted by β ∈

R2×1. The output of complex batch normalization
[

xCBN
n

yCBN
n

]
is [

xCBN
n

yCBN
n

]
= γ

[
x̂n

ŷn

]
+ β.

However, this approach contaminates any phase informa-
tion the data have, potentially degrading speech recognition
performance. Therefore, we propose BAMN.

BAMN is performed by dividing the mini-batch by its
mean absolute value. Let a mini-batch B of size m be
B = {z1...m} ∈ C and let its normalized values be ẑ1...m ∈ C.
Then,

µB =
1

m

m∑
n=1

|zn|, (4)

ẑn =
zn

µB + ϵ
, (5)

where ϵ ∈ R is a constant added to the mini-batch mean
absolute value µB for numerical stability and n = 1, 2, ...,m.
After normalizing the mini-batch, we use scaling parameter
γ ∈ R. The output of BAMN zBAMN

n is therefore

zBAMN
n = γẑn. (6)

The parameter γ is learned to achieve a desired mean. How-
ever, phase information of the mini-batch is inverted if γ is
less than 0. To avoid this problem, γ with values less than
0 are clipped at 0. Consequently, BAMN can reduce internal
covariant shift while maintaining phase information to help
accelerate and stabilize the neural network training.
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III. EXPERIMENTS ON UNSPLICED INPUT FEATURES

In this section, we focus on multiple-CVNN-AM with
unspliced input features. We investigate an activation function
appropriate for speech recognition, the necessity of bias, and
how many complex-valued layers are needed. We also evaluate
the effectiveness of BAMN.

A. Experimental Setup

We conducted experiments using Wall Street Journal
(WSJ) [17] datasets. A multiple-CVNN-AM was trained on the
SI-284 set, which contains 82 hours of speech data. Evaluation
was performed using the November 1992 ARPA WSJ test set,
which contains 333 sentences. For training and evaluation, we
used a modified version of the Kaldi [18] speech recognition
toolkit. FFT was applied to raw signals sampled at 16 kHz
after pre-emphasis with parameter 0.97. The FFT was com-
puted with 512 frequency bins using Hanning windows of
25 ms (400 samples) with a 10 ms shift (160 samples) and
zero padding. We used 257-dimensional FFT features, which
correspond to 0 Hz–8 kHz. The amplitude of the FFT features
was normalized to a unit mean.

Fig. 2 shows the architecture of a multiple-CVNN-AM
with unspliced input features. Each complex-valued layer has
1024 units (512 units each for the real and imaginary parts),
and each real-valued layer has 512 units. The output layer
has 3367 units. Both complex- and real-valued layers are
fully connected. The total number of complex- and real-valued
layers is set to 4. The activation function of real-valued layers
is fixed to a sigmoid function. The multiple-CVNN-AM was
trained using backpropagation with stochastic gradient descent
in a similar manner to section 3.2 in [19]. The initial learning
rate was set to 0.0008. Optimal language model weights for
decoding were selected for each model.

B. Activation Function Type

In this section, we compare real–imaginary and phase–
amplitude functions for use as activation functions. We con-
ducted this experiment by changing the number of complex-
valued layers from two to four layers. We use σR(x) =
tanh(x) for this comparison.

Table I shows word error rates (WERs) for each activa-
tion type and number of layers. This table shows that a
phase–amplitude function achieves superior performance as
compared with a real–imaginary function. A phase–amplitude
function can propagate phase information to the next layer
without change, so complex-valued layers are able to effec-
tively handle phase information from input features. These
results show that phase information is important for training
Multiple-CVNN-AM.

TABLE I
WERS FOR EACH ACTIVATION TYPE AND NUMBER OF LAYERS

# of Complex-valued layers
Activation Activation type 2 layers 3 layers 4 layers

tanh Real-imaginary 9.14 11.11 13.24
Phase-magnitude 8.28 10.08 12.26
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Fig. 2. Architecture of multiple-CVNN-AM with unspliced input features.

C. With or Without Bias

In this section, we investigate the necessity of bias. The
multiple-CVNN-AM structure has two complex-valued and
two real-valued layers.

We chose the following phase–amplitude functions
• tanh : σR(|z|) = tanh(|z|)

• squash : σR(|z|) =
|z|2

1 + |z|2
• log : σR(|z|) = log(|z|+ 1)

Table II shows WERs for each activation functions with
and without bias. This table shows that Multiple-CVNN-AM
without bias achieves superior performance as compared with
that with bias.

As described in [8], multiplying the complex-valued layer’s
inputs by a complex-valued weighting matrix is equivalent
to convoluting the input signal with a filter followed by
weighted average pooling. Therefore, it is possible that training
a complex-valued weight matrix with bias will not work
because the bias harms phase information.

Fig. 3 shows the logarithm of the magnitude weights of
the first complex-valued layer in multiple-CVNN-AM with
(Fig. 3, left) and without (Fig. 3, right) bias. The phase–
amplitude function is tanh. For the first complex-valued layer
without bias, the set of narrowband bandpass filters can be
clearly observed. On the other hand, for the first complex-
valued layer, more than half of the row vectors do not have
clear narrowband bandpass filters. In other words, training the

TABLE II
WERS FOR EACH ACTIVATION FUNCTION WITH AND WITHOUT BIAS

Activation w/ bias w/o bias
tanh 11.13 8.28

squash 9.43 8.70
log 10.35 8.17
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Fig. 3. Logarithm of magnitude weights in the first complex-valued layer in
multiple-CVNN-AM (a) with bias and (b) without bias. The phase–amplitude
function is tanh.

TABLE III
WERS FOR EACH NUMBER OF COMPLEX-VALUED LAYERS

Activation 1 layer 2 layers 3 layers 4 layers
tanh 8.56 8.28 10.08 12.26

squash 9.18 8.70 10.49 10.47
log 8.44 8.17 9.18 Failed

complex-valued layer is difficult when each complex-valued
layer has bias.

D. Number of Complex-Valued Layers

In this section, we investigate the number of required
complex-valued layers. We choose the three phase–amplitude
functions presented in section III-C.

Table III shows WERs for each number of complex-valued
layers. As that table shows, increasing the number of complex-
valued layers to two improves speech recognition performance,
but then performance starts to get worse. These results show
that complex-valued layers are effective for speech recognition
performance, and that having two complex-valued layers is
optimal when the total number of complex and real-valued
layers is four. This suggests that multiple complex- and real-
valued layers are both required.

E. Effect of Batch Amplitude Mean Normalization

In this section, we evaluate the effect of BAMN. We choose
two phase–amplitude functions, tanh and log, as described in
section III-C.

Table IV shows WERs for each combination of BAMN and
activation function. “BAMN→Activ” and “Activ→BAMN”
designations in that table denote whether BAMN is applied
before or after the activation function. The table shows that
BAMN has little effect when the activation function is tanh,
because the output of tanh is bounded above by 1, and hence
the influence from the internal covariant shift is small. On the
other hand, BAMN is effective when the activation function
is log, because the log function output is unbounded. It is
therefore possible that there is influence from the internal
mean absolute value shift. The experimental results suggest
that BAMN can reduce the influence of covariant shift.

Fig. 4 shows a logarithm of magnitude weights for the
first complex-valued layer in the multiple-CVNN-AM without

TABLE IV
WERS FOR EACH COMBINATION OF BAMN AND ACTIVATION FUNCTION

Activation no BAMN BAMN→Activ Activ→BAMN
tanh 8.28 8.24 8.26
log 8.17 7.80 8.01
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Fig. 4. Logarithm of magnitude weights in the first complex-valued layer in
multiple-CVNN-AM with and without bias. The phase–amplitude function is
log.

(Fig. 4, left) and with (Fig. 4, right) BAMN. The phase–
amplitude function is log. Without BAMN, the first one-third
of low vectors have similar filters, with center frequency at
0, and some rows do not have narrowband bandpass filters.
This implies that information related to input features is not
effectively utilized. In contrast, narrowband bandpass filters
are clearly observed with BAMN. These results suggest that
BAMN improves the effectiveness of spectral modeling with
a phase–amplitude log activation function.

IV. EXPERIMENTS ON SPLICED INPUT FEATURES

In this section, we compare multiple-CVNN-AM with
RVNN-AM and single-CVNN-AM under the condition that
input features are spliced. We choose an acoustic model
with CLP (CLP-AM) [8] for the single-CVNN-AM. We also
investigate an appropriate architecture for multiple-CVNN-
AM with spliced input features.

A. Experimental Setup

We conducted experiments on noisy WSJ sets. The training
data was the SI-284 set mixed with pedestrian area (PED)
noise used in the third CHiME Speech Separation and Recog-
nition Challenge (CHiME-3) [20]. Training data were divided
into three parts, mixed with PED noise at 5, 10, and 15 dB. The
training method was that described in section III-A. Evaluation
was performed using the November 1992 ARPA WSJ test set
mixed with PED noise. The test set was mixed with noise
at signal-to-noise ratios (SNRs) of 0, 5, 10, 15, and 20 dB,
resulting in 1665 mixtures (333 utterances × 5 SNRs).

The RVNN-AM has four real-valued layers and an output
layer. Each real-valued layer has 512 nodes and the output
layer has 3367 nodes. The activation function for real-valued
layers is a sigmoid function. The input features of the RVNN-
AM are 40-dimensional log Mel-filterbank energy features
extracted every 10 ms on 25 ms windows from speech signals.
Log Mel-filterbank energy features were normalized to zero
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mean and unit variance, and time-spliced with a context size
of 11 frames.

Extracting a log Mel-filterbank is performed by multiplying
the Mel-filterbank matrix by a power spectrum. Thus, extract-
ing a log Mel-filterbank can be interpreted as a single real-
valued layer without bias. We therefore compare the five-layer
CLP-AM and the five-layer multiple-CVNN-AM with RVNN-
AM as a fair comparison.

The CLP-AM has one complex-valued layer without bias
and four real-valued layers. There is a logarithmic compres-
sion layer next to the absolute layer. The activation func-
tion for the real-valued layers is the sigmoid function. The
multiple-CVNN-AM has two complex-valued layers without
bias and three real-valued layers. The activation function for
the complex-valued layers is the phase–amplitude log function
described in section III-C, and the activation function for the
real-valued layers is sigmoid function. The input features for
CLP-AM and multiple-CVNN-AM are the FFT spectrum. FFT
features are extracted and normalized in a similar manner to
the description in section III-A. Normalized FFT features are
spliced in time taking a context size of eleven frames.

All real-valued layers in CLP-AM and in multiple-CVNN-
AM are fully connected. With respect to the complex-valued
layers in CLP-AM and in multiple-CVNN-AM, we investi-
gated three types of architecture:

• (a) Fully connected
All complex-valued layers are fully connected.

• (b) Separately connected
All complex-valued layers are divided according to con-
text size, and each part of the complex-valued layer is
fully connected. The output from each part of a complex-
valued layer is concatenated as input to the absolute layer.

• (c) Separately connected with weight sharing
The architecture is the same as in (b), but the weight ma-
trix of the complex-valued layer is shared as in Network-
in-Network [21].

Fig. 5 shows details for the RVNN-AM architecture, three
CLP-AM architectures, and three multiple-CVNN-AM. For
CLP-AM architectures, the number of nodes in a complex-
valued layer is set to 440 (complex-valued) in (a), and to
40 (complex-valued) in (b) and (c) as for RVNN-AM. For
multiple-CVNN-AM, the number of nodes in a complex-
valued layer is set so that the number of parameters for
multiple-CVNN-AM is close to the number of parameters for
CLP-AM.

B. Results

Table V shows WERs for the RVNN-AM, the three CLP-
AM architectures, and the three multi-CVNN-AM architec-
tures. In Table V, “+BAMN” indicates that BAMN is ap-
plied to each complex-valued layer. “BAMN→Activ” and
“Activ→BAMN” indicate whether BAMN is applied before
or after the activation function.

We compared three CLP-AM and multi-CVNN-AM archi-
tectures. Table V shows that separately connected structures

(b) and (c) achieve superior speech recognition performance
as compared to fully connected structure (a).

We analyzed the weight matrix of the first layer in multi-
CVNN-AM. Fig. 6–8 show the logarithm of magnitude
weights in the first complex-valued layer in multiple-CVNN-
AMs (a), (b), and (c), respectively. In Fig. 7, all complex-
valued weight matrices for the first complex-valued layer are
horizontally concatenated. Fig. 6 shows that the set of narrow-
band bandpass filters does not appear when all complex-valued
layers are fully connected. Fig. 7 shows that some weights
of the first complex-valued layer have a set of narrowband
bandpass filters, whereas other weights do not. On the other
hand, Fig. 8 clearly shows that the weight of the first complex-
valued layer has a set of narrowband bandpass filters. The
complex-valued layers in multiple-CVNN-AM (c) have lower
degrees of freedom than do multiple-CVNN-AMs (a) and (b)
by sharing the weight matrix. Consequently, optimizing the
complex-valued layers in multiple-CVNN-AM (c) is easier
than in the multiple-CVNN-AMs (a) and (b). Therefore,
multiple-CVNN-AM (c) achieves superior speech recognition
performance as compared to multiple-CVNN-AMs (a) and (b).

We also compared multiple-CVNN-AM with RVNN-AM
and CLP-AM. Table V shows that multiple-CVNN-AM (c)
with BAMN (BAMN→Activ) obtains performance equivalent
to RVNN-AM when the SNR is 15 or 20 dB, and outperforms
RVNN-AM when the SNR is 0, 5, and 10 dB. The relative
improvements as compared with RVNN-AM under conditions
of SNR 0, 5, or 10 dB are 1.99%, 7.45%, and 4.97%,
respectively. The table also shows that multiple-CVNN-AM
(c) with BAMN (BAMN→Activ) outperforms CLP-AM under
all SNR conditions. The relative improvements as compared to
CLP-AM (b) under conditions of SNR 0, 5, 10, 15, and 20 dB
are 6.78%, 6.95%, 11.90%, 4.05%, and 7.86%, respectively.
Table V show that multiple-CVNN-AM outperforms RVNN-
AM and CLP-AM under noise conditions.

V. CONCLUSIONS

This paper explored applying an acoustic model with
multiple-CVNN-AM and spliced features to speech recog-
nition. We empirically determined that having a phase–
magnitude-type activation function, not having bias, and hav-
ing two complex-valued layers is optimal for multiple-CVNN-
AM. We also proposed BAMN to more quickly and stably
train complex-valued layers. Our experimental results showed
that BAMN is effective for multiple-CVNN-AM. Experimental
results also showed that multiple-CVNN-AM outperforms
RVNN-AM and CLP-AM under noise conditions.
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Fig. 5. RVNN-AM, CLP-AM, and multiple CVNN-AM architectures for acoustic models.

TABLE V
WERS FOR RVNN-AM, CLP-AM, AND CVNN-AM

# of Parameters 0 dB 5 dB 10 dB 15 dB 20 dB
RVNN-AM 2751311 30.73 13.15 8.24 6.72 6.73

CLP-AM (a) 5228791 38.31 16.41 10.19 8.91 8.17
CLP-AM (b) 2967191 32.31 13.08 8.91 7.41 7.25
CLP-AM (c) 2761591 34.75 15.13 9.85 8.35 7.85

Multi-CVNN-AM (a) 4915751 36.75 16.02 10.97 9.29 8.65
Multi-CVNN-AM (a) + BAMN(Activ→BAMN) 4916519 36.33 15.54 10.37 8.67 8.38
Multi-CVNN-AM (a) + BAMN(BAMN→Activ) 4916519 34.79 15.13 10.24 8.45 8.05

Multi-CVNN-AM (b) 2954103 36.24 14.92 9.73 8.47 7.66
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Fig. 6. Logarithm of magnitude weights in the first complex-valued layer in multiple-CVNN-AM (a).
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Fig. 7. Logarithm of magnitude weights of the first complex-valued layer in multiple-CVNN-AM (b). The first complex-valued layer has eleven complex-valued
weight matrices. All complex-valued weight matrices are horizontally concatenated.
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Fig. 8. Logarithm of magnitude weights in the first complex-valued layer in multiple-CVNN-AM (c).
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