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Abstract—In recent years, Japanese Twitter-based emotional
speech (JTES) was constructed as an emotional speech corpus.
This corpus is based on tweets, and has features wherein an
emotional label is assigned to each sentence, and sentences are
selected considering the balance of both phoneme and prosody.
Compared to speech recognition without emotion, emotional
speech recognition is a difficult task. In this study, we aim to
improve the performance of emotional speech recognition on the
JTES corpus using acoustic model adaptation. For recognition, a
deep neural network-based hidden Markov model (DNN-HMM)
is used as the acoustic model. As a baseline, a word error
rate (WER) of 38.0% was obtained when the DNN-HMM was
trained by the corpus of spontaneous Japanese. This model was
used as an initial model for adaptation. In this study, various
types of adaptation were examined, and substantial performance
improvement was achieved. Finally, a WER of 23.05% was
obtained using speaker adaptation.

I. INTRODUCTION
In recent years, spoken dialogue systems have received

attention [1]–[5]. In such systems, interaction in a rote routine
is sufficiently practical in the case of a specific purpose such
as information retrieval. However, the application is being
employed to conduct dialogue not only for task achievement
but also in a chat-like manner [6]. For applications that enjoy
the dialogue itself, it is important to build a system consid-
ering emotion. To realize speech dialogue system considering
emotion, it is necessary for the system to accurately recognize
emotions and utterance contents [7]. In this study, we focus
on the latter; emotional speech recognition.
Several emotional speech corpora that can be used for

such researches have been constructed [8]–[11]. For Japanese
Twitter-based emotional speech (JTES), use of an utterance set
that is phonetically and prosodically balanced was proposed in
[12]. In this study, emotion recognition and emotional speech
recognition were also conducted. For emotion recognition,
an accuracy of approximately 68% to 76% was achieved.
On the contrary, although emotional speech recognition was
conducted using a standard Gaussian mixture model-based
hidden Markov model (GMM-HMM) as the acoustic model,
sufficient recognition performance could not be obtained.
In our study, we develop a speech recognition system using

the deep neural network-based hidden Markov model (DNN-

HMM) for recognizing utterances in JTES. DNN-based speech
recognition is well known and has received considerable atten-
tion for its performance in large-vocabulary continuous speech
recognition. However, emotional speech cannot be sufficiently
recognized even if the DNN-HMM is used as the acoustic
model.
The prosody is different between emotional speech and

neutral speech; it appears as a difference in duration, speech
strength, and pitch. Prosody also affects spectral patterns.
To solve the problem, we investigate the adaptation methods
of the acoustic model. Study on the model adaptation of
emotional speech recognition using the DNN-HMM is lacking.
In this work, we investigate the following three points:

• Examination of effect by difference of adaptation data.
• Investigation of the number of epochs in the adaptation
step.

• Output probability compensation in the recognition step.
To confirm the effectiveness of the above, we conducted
various speech recognition experiments using 400 emotional
utterances in JTES.
The remainder of this paper is organized as follows: Section

II introduces the emotional speech corpus JTES. Section III
describes the proposed adaptation and recognition methods.
Adaptation types are described in Section IV. Section V
describes the conditions of the speech recognition experiments.
Section VI describes the results of the speech recognition
experiments. Section VII provides our conclusions.

II. EMOTIONAL SPEECH CORPUS: JTES

JTES is based on tweets on Twitter and comprises speech
utterances by 50 males and 50 females [12]. As Twitter
contains many colloquial expressions, it is possible to col-
lect speech utterances with various emotions by emotionally
reading out the contents. Tweets were classified into four
emotion classes, namely joy, anger, sadness and neutral using
emotional expression words. Phonetically and prosodically
balanced sentences were selected using the sentence selection
algorithm based on entropy. Finally, 50 sentences for each
emotion were selected. Emotional utterances were recorded
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using those sentences. The total number of utterances in JTES
is 20,000.

III. ADAPTATION AND RECOGNITION METHODS
In this section, we describe the adaptation and recognition

methods used in our system. We use the DNN-HMM as an
acoustic model in this work. As another method, long short
term memory recurrent neural network can also be used [13].
We would like to compare these two methods in the future.
In the experiments, we conduct supervised adaptation on the
premise that a correct label is given to each utterance for
adaptation. The back-propagation algorithm is used for adap-
tation where early stopping is introduced for automatically
determining the number of epochs [14]. In the recognition step,
we use the output probability compensation method [15]. In
addition, we describe the correspondence of language models
to unknown words.

A. Early Stopping
Early stopping is a technique for automatically determining

the number of epochs during adaptation or training DNN
parameters. In this method, the number is determined using
a part of adaptation (or training) data as evaluation data and
performing cross-validation. In the iteration step of adaptation
or training, the iteration is stopped when the improvement rate
of frame recognition becomes lower than the threshold value.
This can be expected to avoid over-fitting of parameters. In this
study, the division ratio between adaptation data and evaluation
data is set to 9:1.

B. Compensation of Output Probability
In output probability calculation, there is a problem that the

occurrence probability of state becomes extremely high with
some phonemes such as silence. To solve this problem, output
probability is compensated in the recognition step. The output
probability of the DNN-HMM is calculated as

p(x|si) = p(si|x)p(x)
p(si)

, (1)

where p(x), the occurrence probability of an input feature x,
is omitted because it does not affect the recognition result.
p(si) is the occurrence probability of state si. This value
depends on the appearance frequency of a phoneme in training
data. Since phonemes such as silence frequently appear in
training data, p(si) becomes high. By limiting this value, an
extreme decrease in the output probability can be prevented.
The specific method is as follows. When p(si) exceeds the
upper limit θ, it is replaced with θ. The value θ is determined
by setting the limiting rate α in (2).

α =

∑
i∈D{p(si)− θ}
∑I

i=1 p(si)
, (2)

where I is the total number of states, and D is the set of i
that satisfies p(si) > θ. The explanatory diagram is shown
in Fig. 1 where i is rearranged in descending order of p(si).
α represents the ratio of the hatched portion to the total area

TABLE I
TRAINING CONDITIONS FOR DNN

Pre-training
#epochs 10 (20 only for the first layer)

Mimi-batch size 1024
Momentum 0.9

L2 regularization factor 0.0002
Fine-tuning

#epochs The process terminates when the frame
accuracy increases by less than 0.1%.

Mini-batch size 512

surrounded by the curve. This method is effective especially
when the amount of adaptation data is small.

C. Correspondence of Unknown Words
The language models used in speech recognition herein

are trained using the corpus of spontaneous Japanese (CSJ)
by considering the amount of data. The CSJ is the largest
spontaneous speech corpus in Japanese [16]. However, as the
CSJ consists of lecture speech, it is not suitable for recognizing
utterances in JTES. Further, it is difficult to collect training
data sufficiently to create a language model for tweets. We
addressed this problem by adding unknown words to the
word lexicon. The proportion of unknown words in evaluation
data was 3.15%. We added these unknown words in the
experiments and conducted them excluding the influence of
unknown words.

IV. ADAPTATION TYPES
Conventionally, the adaptation of the DNN-HMM for emo-

tional speech has not been sufficiently studied. Therefore, to
clarify what type of adaptation data is effective, we compare
various adaptation conditions in recognition experiments. The
experimental conditions of each adaptation are shown below.
Each adaptation is conducted in the supervised mode.

Speaker adaptation Adaptation is conducted using the data of
the same speaker as the evaluated speaker. The adapted model
is independent of emotion.
Corpus adaptation The acoustic environment differs greatly
between the CSJ used for training of the pre-adaptation model
and JTES used for evaluation. To handle this difference, the
model is adapted to the environment of JTES. The adapted
model is independent of the speaker and emotion.

Fig. 1. Explanatory diagram of output probability compensation.
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TABLE II
NUMBER OF ADAPTATION SAMPLES AND ADAPTED MODELS FOR EACH EXPERIMENT

Title #adaptation samples #adapted models
Speaker adaptation 160 40 sentences × 4 emotions × 1 speaker 10 = #evaluation speakers
Corpus adaptation 14,400 40 sentences × 4 emotions × 90 speakers 1
Emotion adaptation 3,600 40 sentences × 1 emotion × 90 speakers 4 ( = #emotions )

Speaker and emotion adaptation 40 40 sentences × 1 emotion × 1 speaker 40 ( = #evaluation speakers × #emotions )

Emotion adaptation Adaptation is conducted using specific
emotion data. The adapted model depends on specific emotion
and is independent of the speaker.
Speaker and emotion adaptation The model is adapted to
both speaker and emotion. The best matching can be expected
between the acoustic model and the acoustic environment.
However the amount of adaptation data is small.

V. EXPERIMENTAL CONDITIONS
Experimental conditions are described in this section. First,

we describe our recognition system. In the speech analysis
module, a speech signal is digitized at a sampling frequency
of 16 kHz with a quantization size of 16 bits. The length of the
analysis frame is 25 ms, and the frame period is set to 8 ms.
A 25-dimensional feature, which comprises the log mel-filter
bank features and the log power, is derived from the digitized
samples for each frame. Moreover, the delta and delta–delta
features are calculated from the 25-dimensional feature, and
hence the total number of dimensions is 75 per frame. The
input layer of the DNN uses 75 coefficients with a temporal
context of 11 frames, summing to a total of 825 input features.
The DNN has seven hidden layers with 2048 hidden units in
each layer. The total number of states for shared-state triphone
is 3003. The final output layer has 3003 units, corresponding
to the total number of states.
Speech data of 963 lectures in the CSJ are used for DNN-

HMM training. The total speech length is approximately 203
h. The training method of the DNN is as follows. In the pre-
training step, the restricted Boltzmann machine was used as
the method of training in the unsupervised mode. In the fine-
tuning step, a class label was given for each frame, and the
back-propagation algorithm with stochastic gradient descent
was used. Cross entropy was used as the loss function. Other
conditions of DNN training are shown in Table I.
The bigram and trigram models were used as language

models. They were trained on textual data containing 2668
lectures from the CSJ, and the total number of words was
6.68M. For experiments of adding unknown words, we added
44 words appearing only in the evaluation data as unknown
words to the word lexicon.
The configuration of the recognition system is as follows: A

two-pass search decoder with a bigram and trigram was used
for recognition. In the first pass, a word graph was generated
using the DNN-HMM and the bigram language model. Decod-
ing was performed using a one-pass algorithm that involves a
frame-synchronous beam search and a tree-structured lexicon.
In the second pass, the trigram language model was applied

TABLE III
ADAPTATION CONDITIONS FOR DNN

Mini-batch size 2048
Momentum 0.0

L2 regularization factor 0.0002
#epochs The process terminates when the frame

accuracy increases by less than 0.005%
for early stopping experiments.

TABLE IV
RECOGNITION RESULTS FOR LIMITING RATE α

α 0.00 0.05 0.10 0.15
WER(%) 39.33 37.79 36.12 36.75

to re-score the word graph, and the recognition result was
obtained.
Adaptation of the DNN was conducted using a back-

propagation algorithm like fine-tuning. The number of adap-
tation samples for each adaptation is shown in Table II. Four
hundred sentences ( 10 sentences × 4 emotions × 10 speakers
) from JTES different from the adaptation data were used as
evaluation data. The detailed conditions of the DNN adaptation
are shown in Table III.

VI. RECOGNITION EXPERIMENTS
A. Effectiveness of Compensation of Output Probability
To clarify the effectiveness of the compensation method

described in Section III-B, the preliminary experiment was
conducted. Eighty sentences ( 10 sentences × 4 emotions × 2
speakers ) uttered by two of the evaluated speakers were used
for evaluation. As p(si) in equation (2) can not be calculated
accurately with a small amount of data, it was calculated by
using the baseline training data. The recognition results are in-
dicated by the word error rate (WER) in Table IV. Performance
improvement can be found with a limiting rate compared
to the performance without it. The best performance can be
obtained at α = 0.1. Therefore, the following experiments
were conducted using this value.

B. Adaptation Experiments
The results of adaptation experiments are shown in Table V.

In this table, epoch5 means that the number of epochs is fixed
to five. Estop means early stopping is used for adaptation,
and estop+unk is a combination method of early stopping
and unknown word countermeasure. In speaker and emotion
adaptation experiments, since the number of adaptation ut-
terances is only 40, cross-validation for early stopping could
not be performed. Hence, the results related to early stopping
are omitted. The results demonstrate that the recognition
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TABLE V
RESULTS OF ADAPTATION EXPERIMENTS (WER[%]).

Baseline Speaker Corpus Emotion Speaker and
emotion

Epoch5 27.86 32.37 29.50 31.81
Estop 38.10 25.50 29.76 29.42 -

Estop+unk 23.05 26.91 27.01 -

TABLE VI
RELATIONSHIP BETWEEN NUMBER OF EPOCHS AND RECOGNITION

PERFORMANCE (WER[%]).

Adaptation Type Epoch5 Estop (#epochs) Oracle (#epochs)
Corpus - 32.37 29.76 (1) 29.76 (1)
Emotion anger 35.83 34.58 (2) 34.17 (3)

joy 37.23 37.23 (3) 37.08 (1)
sadness 25.30 25.76 (1) 25.30 (5)
neutral 19.64 20.12 (2) 18.80 (10)
average 29.50 29.42 28.84

performance without adaptation is very low (see baseline),
whereas every adaptation method is effective.
When comparing epoch5 and estop, it is found that the

early stopping method is effective. The number of epochs
in the estop experiments is large when speaker adaptation is
conducted, and it depends on the speaker. The number ranges
from 11 to 23. On the contrary, the number is small when
corpus or emotion adaptation are conducted. Thus, since the
number varies depending on adaptation method, fixing the
number degrades recognition performance. Table VI shows the
relationship between the number of epochs and recognition
performance on corpus and emotion adaptation experiments.
In this table, we describe three cases, the number is fixed
to 5 (epoch5), early stopping is conducted (estop), and the
number is adjusted to the optimum value (oracle). In the
corpus adaptation, the number automatically determined is
equal to the optimum number. This means that this method was
very successful in this case. For emotion adaptation, WERs in
estop experiments are similar to those in oracle except for
neutral. From these results, this method is considered to be
effective especially when the performance is low.
The results of stop+unk in Table V show that the addi-

tion of unknown words is effective. In the comparison of
various adaptation methods, speaker adaptation shows the
best performance. This shows that the influence of speaker
characteristics is stronger than that of emotion. However, as
speech recording of a specific speaker is required in advance
for speaker adaptation, there is a limit in actual use. Since
corpus or emotion adaptation do not depend on the speaker, the
system can be used when the speaker is unknown. Thus, those
are suitable for wide use. Corpus adaptation and emotion adap-
tation exhibit similar performance. This means that emotion-
dependent model is not so effective in this experimental
condition. In this experiment, four emotions, namely anger,
joy, sadness, and neutral were used. However, it is difficult
to classify emotions simply. There are various emotional
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Fig. 2. Word error rate for each emotion [%].
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Fig. 3. Phoneme error rate for each emotion [%].

strengths even with the same emotion. To create emotion-
dependent models, investigating what type of classification is
effective is necessary. Performance is worse with speaker and
emotion adaptation where we expected higher performance.
This is due to the small amount of adaptation data (see Table
II). To solve this problem, it is necessary to adopt a method
that can cope with less data.
Figure 2 shows the WER for each emotion in the estop+unk

condition. The word recognition results are converted into
phoneme sequences to calculate a phoneme error rate (PER)
(see Fig. 3). From the results of Fig 2, the recognition perfor-
mance is apparently worse for emotional speech. However, the
PER for anger and sadness indicates better performance than
that for neutral in the speaker adaptation experiment. Thus,
speaker adaptation works well for emotional speech, except for
joy. Additionally, the mismatch between the WER and PER
suggests that language models are not suitable for this task.
The language models used in the system are created by lecture
speech, and language model adaptation is considered necessary
to improve the recognition performance for emotional speech.

VII. CONCLUSIONS

In this study, we examined emotional speech recognition
using the emotional speech corpus JTES for adaptation and
evaluation. In the experiments of acoustic model adaptation,
the speaker, corpus, and emotion adaptation were examined.
In each case, performance improvement could be obtained.
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Among these methods, the best performance could be obtained
with speaker adaptation. In addition, both the early stopping
method and unknown word countermeasure were effective for
adaptation.
As a future task, we will examine emotion adaptation further

by investigating acoustic model adaptation in consideration
of emotion strength rather than by simply creating emotion-
dependent models. We used a simple retraining algorithm for
model adaptation in this work. Because various adaptation
methods exist that can be executed with a small amount of
adaptation data, we will attempt to use them [17]–[20]. In this
study, the language models were created from a lecture speech
corpus. However, word occurrence frequency differs between
lecture speech and tweets on Twitter. We intend to solve this
problem in the future with language model adaptation. In
addition, we would like to introduce the emotional speech
recognition into the multi-modal dialog system developed by
the authors [21].
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