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Abstract—Identifying the type of a codec that used to compress
data is essential in digital forensics since many trials and errors
required to restore data can be reduced. Nevertheless, most
compression algorithms have been configured by using several
parameters whose values can be different according to each user.
Therefore, in order to restore data more effectively, the values of
parameters as well as the type of the codec must be identified. In
this paper, we present an identification and restoration method
for Lempel-Ziv-77 (LZ77) compressed data. In the proposed
method, we identify whether a given data is compressed by LZ77
or not. Moreover, we estimate the values of parameters that
were used for compression. Using the estimated parameters, we
restore the original data from the LZ77 compressed data. The
simulation results demonstrate the feasibility and effectiveness of
the proposed method with a successful compression identification
and parameter estimation accuracies of 100% and 84.41%.

I. INTRODUCTION

Digital forensics is a scientific investigation technique that
recovers and analyzes digital evidence found in digital devices.
Recently, digital forensics has received increasing attention
due to the proliferation of digital crime. Since digital criminals
hide their criminal activities in a vast digital data, digital foren-
sic investigators face the task of finding digital evidences from
the vast digital sources. Moreover, the criminals sometimes
change or delete the header information of data to obstruct
the investigations. The header information of a data contains
information pertaining to the type of codec used to compress
the data. If there is no knowledge of the type of the codec,
it is difficult to restore the original data from the compressed
data. Therefore, identifying the type of codec may be useful
in digital forensics because many trials and errors required to
restore the data can be reduced.

However, most compression algorithms have several param-
eters whose values can be changed according to each user.
Therefore, in order to restore data more reliably, the values
of the parameters as well as the type of the codec must be
estimated. However, most studies for codec identification and
parameter estimation have been aimed at audio, speech, image
and video files [1], [2]. Moreover, since lossy compression
algorithms are used in audio, speech, and video compression,
the studies above have been focused on lossy compression
algorithms. To the best of our knowledge, little has been
studied for codec identification and parameter estimation in
text and data files where lossless compression algorithms are
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Fig. 1: Block diagram for the identification and restoration of
blind data.
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Fig. 2: Compression process of LZ77 when the input stream is
“abbacbbac” and the sizes of the search and lookahead buffers
are 4 and 4, respectively.

used.

Since the original text and data files must be restorable with-
out any loss of information, lossless compression algorithms
are used to compress them. Lempel-Ziv-77 (LZ77) proposed
in [3] is one of the most popular algorithms used in lossless
compression. In this paper, we present an identification and
restoration method for LZ77 compressed data. In the proposed
method, via the byte frequency analysis, we identify whether a
given data is compressed by LZ77 or not. Then, we estimate
the parameters of LZ77 using both the frequency and runs
tests. In addition, using the estimated parameters, we restore
the original data from the LZ77 compressed data. The simple
block diagram of the process above is shown in Fig. 1.

The remainder of this paper is organized as follows. In
Section II, we explain LZ77 with a simple example. In Section
III, we propose a LZ77 compression identification method. A
method for estimation of parameters used in LZ77 is described
in Section IV. The results of our experiments are given in
Section V. Finally, we conclude our paper in Section VI.
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II. LEMPEL-ZIV-77
Fig. 2 represents the compression process of LZ77. As

illustrated in the figure, LZ77 compresses the input stream
using a sliding window that consists of a search buffer and
a lookahead buffer. First, LZ77 finds the longest matching
length of letters stored in the lookahead and search buffers.
The matched letters are encoded as tuple 〈i, j,X〉, where i
signifies the distance between the start of the matched letters in
the search buffer and the end of the search buffer, j represents
the number of matched letters, and X is the next letter after the
matched letters in the lookahead buffer. If there are no matched
letters in the search and lookahead buffers, LZ77 outputs
〈0, 0, X〉. In this case, X is the first letter in the lookahead
buffer. After LZ77 outputs a tuple, the sliding window moves
j+1 blocks forwards. In the figure, the sliding window moves
from left to right.

If there are no further letters to be compressed, LZ77
outputs 〈i, j, $〉. Here, $ plays a role in instructing that there
are no further letters to be decoded in the decompression
process of LZ77. After the compression process is completed,
LZ77 converts each tuple into binary form. Let S and L be
the sizes of the search and lookahead buffers, respectively. The
length of the binary stream for each tuple depends on the value
of S. Let B be the length of the binary stream of both i and j.
Then, the value of B is determined by the following condition:
2B−1 ≤ S < 2B . On the other hand, X is encoded with 8 bits
based on American Standard Code for Information Interchange
(ASCII). Therefore, the length of the binary stream for each
tuple can be calculated as (2×B + 8) bits.

III. LZ77 COMPRESSION IDENTIFICATION

In this section, we present the method for LZ77 compression
identification. In the proposed method, the identification is
performed using a criterion that is designed based on the
byte frequency distributions of LZ77 compressed data and
uncompressed data. Byte frequency distribution of a bitstream
is obtained using the byte frequency analysis (BFA) proposed
in [4]. In order to help the understanding for the BFA, we
briefly explain it.

Byte Frequency Analysis: the purpose of the BFA is to
obtain the byte frequency distribution of an input bitstream.
The distribution is obtained by the following procedures. First,
an array that is indexed from 0 to 255 is constructed. Then,
all elements of the array are initialized with zeros. Next, the
byte value is calculated at every 8 bits for the input bitstream.
Here, the byte value is defined as the decimal value of 8 bits
read from the bitstream. The byte that consists of eight bits
is capable of representing the decimal values from 0 to 255.
Therefore, the byte value also has a range of 0 to 255. For
example, if the byte value of 8 bits read is 17, the 17th element
of the array is incremented by one. By incrementing the
corresponding element in the array according to the occurrence
of the byte value, the byte frequency distribution of the input
bitstream can be obtained. After the process above is complete,
for normalization, each element in the array is divided by the
number of occurrences of the most frequent byte value.
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(b) LZ77 compressed data (S = 1024)

Fig. 3: Byte frequency distributions for uncompressed data and
LZ77 compressed data.

Fig. 3 shows the byte frequency distributions for uncom-
pressed data and LZ77 compressed data. As shown in Fig. 3(a),
for uncompressed data, the occurrences of the byte values are
concentrated in the range of 12 to 129. By the ASCII chart, the
byte values in this range include line feed, space, punctuation
marks, digits, and Alphabet, which are widely used in text
and data files. By contrast, for LZ77 compressed data, the
occurrences of byte values are distributed from 0 to 255 as
shown in Fig. 3(b). In addition, a large spike at the byte value
of 0 is observed. This means that the LZ77 compressed data
has many regions that are filled with the byte value of zero.

From the observation between the two distributions, we
design the criterion that indentifies whether the input bitstrem
is LZ77 compressed data or uncompressed data. Let dl(β)
be the number of occurrences of the byte value of l in the
bitstream β, l ∈ {0, 1, · · · , 255}, and D(β) be the criteria
value for LZ77 compression identification. Then, in this paper,
D(β) is defined as

D(β) =

∑129
l=12 dl(β)∑255
l=0 dl(β)

. (1)
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Fig. 4: Block diagram for LZ77 parameter estimation.

Since the occurrences of the byte values of uncompressed
data are concentrated in the range of 12 to 129, D(β) for
uncompressed data is close to 1. On the other hand, for LZ77
compressed data, D(β) is greater than 0 and less than 1.
From this observation, we conclude that D(β) can be used
to the criteria value for LZ77 compression identification. For
identification, we adopt the threshold α. In this paper, the value
of α is set to 0.9. Finally, if D(β) < α, the bitstrem β is
identified as LZ77 compressed data. If D(β) ≥ α, the bitstrem
β is identified as uncompressed data.

IV. LZ77 PARAMETER ESTIMATION

If a given data is identified as LZ77 compressed data, LZ77
parameter estimation is performed. As we described in Section
II, LZ77 has the two parameters: S and L. If there are no
knowledge about the values of S and L, it is difficult to restore
the original data from the LZ77 compressed data identified.
In order to resolve this problem, we propose a method for
LZ77 parameter estimation. Towards this goal, we apply two
statistical tests proposed in [5] to extract features from the
input bitstream. In addition, we use support vector machine
(SVM) as a classifier. We train the SVM classifier using the
extracted features and the label information for the parameters.
Finally, we employ the learned SVM classifier to estimate the
parameters that were used to compress the original data. Fig. 4
shows the block diagram for the LZ77 parameter estimation.
The two statistical tests used for feature extraction are the
frequency and runs tests. In order to help the understanding
for the two tests, we briefly review each test.

Frequency Test: this test focuses on the proportion of zeros
and ones in the input bitstream. This test is based on the
hypothesis that the proportion of zeros and ones may vary
according to the values of S and L. The output (feature) of the
frequency test is obtained by the following procedures. First,
the zeros in the input bitstream are converted into the values
of −1. In addition, the ones in the bitstream are converted
into the values of +1. After the conversion is complete, these
values are summed. Let TF be the sum of the values. Then,
TF is divided by the square root of the length of the input
bitstream. Finally, the result value is outputted as a feature.
For example, if the bitstream “1110” is inputted, “1110” is

TABLE I: Compression results using LZ77 for WikiLeaks.

Type and Parameter Size (bytes)
Uncompressed data 45,157,523

Compressed
data

S = 2 54,253,018
S = 4 57,504,782
S = 8 60,829,608
S = 16 64,874,987
S = 32 68,368,800
S = 64 68,156,342
S = 128 60,510,512
S = 256 51,695,414
S = 512 46,734,962
S = 1024 43,747,343
S = 2048 40,782,446
S = 4096 37,426,815
S = 8192 35,201,094

converted as “(+1)(+1)(+1)(−1)” and TF is calculated as
TF = 1+1+1−1 = 2. Then, TF = 2 is divided by

√
4 = 2.

Finally, the result value of 1 is outputted.
Runs Test: this test focuses on the total number of runs

in the input bitstream. Here, a run means an uniterrupted
sequence of identical bits. This test is based on the hypothesis
that the total number of runs may vary according to the values
of S and L. For ease of explanation, let n be the length
of the input bitstream and ε = [ε1, ε2, · · · , εn] be a vector
representation of the input bitstream, where εi is the ith bit of
the input bitstream. In addition, let R(ε) be the total number
of runs for ε. Then, R(ε) is given by

R(ε) =

n−1∑
k=1

r(k) + 1, (2)

where r(k) = 0, 1 for εk = εk+1 and εk 6= εk+1, respec-
tivley. The output (feature) of the runs test is obtained by
the following procedures. First, R(ε) for the input stream ε
consisting of n bits is calculated. Then, R(ε) is divided by√
n, and then the result value is outputted as a feature. For

example, if ε = 111010, then n = 6. R(ε) is calculated as
R(ε) = 0 + 0 + 1 + 1 + 1 + 1 = 4, and then R(ε) is divided
by
√
n =
√
6. Finally, the result value of 4/

√
6 is outputted.

V. SIMULATION RESULTS

In this section, we describe the results of our experiments.
To validate the proposed method, we use text files from
the publicly available database of WikiLeaks1. This database
contains 1,440 text files. By referring to [6], each text file is
compressed individually with LZ77. During the compression,
the value of L is set to the value of S (i.e, L=S). The
compression results are presented in Table I. As shown in
the table, the LZ77 compression efficiency is not good for
S = 2, 4, 8, 16, 32, 64, 128, 256, 512. It means that the sizes of
the lookahead and search buffers are not sufficient to compress
the files. Therefore, in this paper, we utilize the compression
results with S = 1024, 2048, 4096, 8192.

1https://911.wikileaks.org/files/

1789

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



TABLE II: Compression identification accuracy.

S 1024 2048 4096 8192
True Positive 100 100 100 100
False Positive 100 100 100 100
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Fig. 5: Scatter plot of S = 1024, 2048, 4096, 8192 classes in
a two dimensional feature space.

Table II shows the LZ77 compression identification accu-
racy of the proposed method. As shown in the table, the iden-
tification accuracy of the proposed method for uncompressed
data and LZ77 compressed data are always 100%.

Fig. 5 shows the two dimensional feature space resulting
from the frequency and runs tests. As shown in the figure,
each class is well separated from each other. Table III shows
the confusion matrix for the LZ77 parameter estimation of
our method. The diagonal elements in the confusion matrix
represent the correctly estimated rates for LZ77 parameters.
The average estimation accuracy of the proposed method was
approximately 84.41%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the method for identification
and restoration of LZ77 compressed data. When a data is
given, the method firstly identifies whether the data is LZ77
compressed data or uncompressed data. This identification
process is performed based on the two statistical tests. If
the given data is identified as LZ77 compressed data, the
method estimates the parameters that were used to compress
the original data. This estimation process is performed based
on the byte frequency analysis. Although the experimental
results were promising, there are several issues that need
to be solved in future work. First, the feasibility of the
LZ77 compression identification method needs to be validated
including additional compression algorithms, such as Lempel-
Ziv-Storer-Szymanski (LZSS) [7]. The current results were
obtained under conditions that there are LZ77 compressed
data and uncompressed data only. Second, the current version

TABLE III: Confusion matrix for the parameter estimation.

Type ID 1 2 3 4
S = 1024 1 81.25 18.47 0.28 0.00
S = 2048 2 20.28 72.64 7.08 0.00
S = 4096 3 0.97 10.42 86.25 2.36
S = 8192 4 0.28 0.00 2.22 97.50

of the LZ77 parameter estimation is performed under the
assumption that the values of S and L are the same. However,
for generalization, the current method needs to be extended
to cover the cases where the values of S and L are different.
Third, the current method is performed under the assumption
that there are no bit errors in the LZ77 compressed data.
However, in practical application, bit errors can occur in
LZ77 compressed data for a varierty of reasons, such as bad
communication channel environment [8]–[14].
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