
Statistical-Mechanical Analysis of
the Second-Order Adaptive Volterra Filter

Kimiko Motonaka∗, Takashi Katsube†, Yoshinobu Kajikawa∗, and Seiji Miyoshi∗
∗ Kansai University, Osaka, Japan

E-mail: motonaka@kansai-u.ac.jp Tel: +86-6368-1121
† KYOCERA Communication Systems Co., Ltd., Japan

Abstract—The Volterra filter is a digital filter that can describe
nonlinearity. In this paper, we analyze the dynamic behaviors
of an adaptive signal-processing system based on the Volterra
filter by a statistical-mechanical method. On the basis of the
self-averaging when the tapped delay line is assumed to be
infinitely long, we derive simultaneous differential equations in a
deterministic and closed form that describe the behaviors of the
macroscopic variables and obtain the exact solution by solving
them analytically. In addition, the validity of the derived theory
is confirmed by comparison with numerical simulations.

I. INTRODUCTION

Adaptive signal-processing techniques have been used in
various fields, such as information communication and acous-
tic systems[1], [2]. There have been many studies on tech-
niques using a linear digital filter and also on theoretical
analysis [3], [4], [5]. As an example, a linear digital filter
for active noise control [6], [7], [8], [9] has been subjected to
statistical-mechanical analysis [10]. On the other hand, in an
actual environment, the target system is often nonlinear, thus,
a digital filter that can describe the nonlinearity is desirable.
The Volterra filter is one such digital filter that can describe
nonlinearity [11]. The Volterra filter can effectively describe
weak nonlinearity with no hysteresis and has been applied to
the modeling of loudspeaker systems and other applications.
However, there has been insufficient theoretical analysis of the
Volterra filter. Therefore, in this paper, we analyze the dynamic
behaviors of an adaptive signal-processing system based on
the Volterra filter by a statistical-mechanical method. Such
theoretical analysis is important for obtaining deep insight into
the behavior of the system.

While many update algorithms have been proposed for the
adaptive Volterra filter, we analyze the case of using the least-
mean-square (LMS) algorithm [1], [2], [12]. In this paper,
on the basis of self-averaging [10], when the tapped delay
line is assumed to be infinitely long, we derive simultaneous
differential equations in a deterministic and closed form that
describe the behaviors of the macroscopic variables and obtain
the exact solution by solving them analytically. Then, we
verify the behavior of the Volterra filter while changing the
step size and background noise. Finally, we confirm that the
analytically obtained dynamic behavior of the mean square
error MSE (learning curves) is in good agreement results of
numerical simulations.

Fig. 1. Block diagram of the adaptive system.

II. VOLTERRA FILTER

The Volterra filter is a digital filter that can describe non-
linearity and uses the Volterra kernel of the Volterra series
expansion as the digital filter. The discrete Volterra series
expansion up to the Lth Volterra kernel is defined as

y(n) =

∞∑
k1=0

h(k1)x(n− k1)

+
∞∑

k1=0

∞∑
k2=0

h(k1, k2)x(n− k1)x(n− k2)

+ ...

+
∞∑

k1=0

...
∞∑

kL=0

h(k1, ..., kL)
L∏

i=1

x(n− ki).

(1)

Here, x(n) and y(n) are the input signal and output signal
of time step n, respectively. h(k1, ..., kl) is the l-th Volterra
kernel. In the adaptive Volterra filter, this Volterra kernel
h(k1, ..., kl) is updated. Note that, in the case of L = 1, it
is equivalent to a linear filter.

III. ANALYTICAL MODEL

The Volterra filter applied to adaptive signal processing is
called the adaptive Volterra filter. Various methods, which are
the same as those used with a normal linear adaptive filter, for
example, the gradient method and the recursive least-squares
(RLS) method, can be used to update the adaptive Volterra
filter, and we analyze the case when the LMS algorithm, which
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is one of the gradient methods, is used for updating. Figure
1 shows a block diagram of the adaptive system. In Fig. 1,
P denotes the unknown system and H denotes the adaptive
filter. P and H are constructed from the second-order Volterra
kernels, P = {p(k1, k2)}, H(n) = {h(k1, k2;n)}, k1, k2 =
0, ..., N−1. Each element of upper triangular part of the matrix
P , that is, p(k1, k2), k1 ≤ k2, is generated independently
from a distribution with a mean of zero and a variance of
one. In addition, each element p(k2, k1), k1 ≤ k2 is equal
to p(k1, k2). This means P is a symmetric matrix. The initial
matrix H(0) is set to the zero matrix. The input signal x(n)
is generated independently from a distribution with a mean of
zero and a variance of 1/N . Here, the tap input vector x(n)
in time step n is

x(n) = [x(n), x(n− 1), ..., x(n−N + 1)]T . (2)

The outputs d(n) and u(n) of P and H, respectively, in time
step n are

d(n) =

N−1∑
k1=0

N−1∑
k2=0

p(k1, k2)x(n− k1)x(n− k2)

= x(n)TPx(n), (3)

u(n) =
N−1∑
k1=0

N−1∑
k2=0

h(k1, k2;n)x(n− k1)x(n− k2)

= x(n)TH(n)x(n). (4)

The error signal e(n) is obtained by subtracting the output
signal of the adaptive Volterra filter u(n) from the output
signal of the unknown system d(n) and adding a background
noise ξ(n):

e(n) = d(n)− u(n) + ξ(n). (5)

Here, the background noise ξ(n) is generated independently
from a distribution with a mean of zero and a variance of σ2

ξ .
The update formula of the adaptive Volterra filter using the
LMS algorithm is

h(k1, k2;n+ 1) = h(k1, k2;n) + µe(n)x(n− k1)x(n− k2),
(6)

where µ denotes the step-size parameter.

IV. THEORY

In this section, we describe a theoretical analysis of the
behaviors of the adaptive Volterra filter by a statistical-
mechanical method. The MSE of the model used can be
calculated using Eq. (5) as follows:⟨

e2(n)
⟩
=
⟨
(d(n)− u(n) + ξ(n))

2
⟩

(7)

=
⟨
d2(n)

⟩
+
⟨
u2(n)

⟩
− 2 ⟨d(n)u(n)⟩+ σ2

ξ . (8)

Note that the background noise ξ(n) is independent of the
other stochastic variables and its variance σ2

ξ is used. The
detail of the calculation is omitted, but each term on the right

side of Eq. (8) can be calculated using Eqs. (3) and (4) as
follows:

⟨
d2(n)

⟩
=

2

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

p2(k1, k2), (9)

⟨
u2(n)

⟩
=

2

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

h2(k1, k2;n), (10)

⟨d(n)u(n)⟩ = 2

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

p(k1, k2)h(k1, k2;n). (11)

Here, we assume that there is little correlation between x(n)
and H(n) [3], [4], [5]. In addition, it is later assumed that
N → ∞, and the terms that can be ignored when N → ∞
are omitted here. Next, we introduce the macroscopic variables
R(n) and Q(n), defined as follows:

R(n) =
1

N2

N−1∑
k1=0

N−1∑
k2=0

p(k1, k2)h(k1, k2;n), (12)

Q(n) =
1

N2

N−1∑
k1=0

N−1∑
k2=0

h2(k1, k2;n). (13)

From Eqs. (8)-(13),⟨
e2(n)

⟩
=
⟨
d2(n)

⟩
+ 2Q(n)− 4R(n) + σ2

ξ . (14)

This equation shows that the MSE is a function of the
macroscopic variables R(n) and Q(n).

Now, we derive the simultaneous differential equations that
describe the dynamic behavior of the MSE. First, we derive
the differential equation for R(n). Multiplying both sides of
Eq. (6) by p(k1, k2) and summing it over k1 and k2, we obtain

N−1∑
k1=0

N−1∑
k2=0

p(k1, k2)h(k1, k2;n+ 1)

=

N−1∑
k1=0

N−1∑
k2=0

p(k1, k2)h(k1, k2;n)

+ µe(n)

N−1∑
k1=0

N−1∑
k2=0

p(k1, k2)x(n− k1)x(n− k2). (15)

From Eqs. (3) and (12),

N2R(n+ 1) = N2R(n) + µe(n)d(n). (16)

Note that the first terms on both sides of Eq. (16) are O(N2)
but the second term on the right side is O(1). Thus, to change
R(n) by O(1), O(N2) updates are needed. Therefore, we use
the value t, which is n normalized by N2, as the time scale.
By updating N2dt times in an infinitely small time dt, we
can obtain N2dt equations similar to Eq. (16). Summing all
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equations, we obtain

N2R(n+N2dt) =

N2R(n) + µ

N2dt−1∑
i=0

e(n+ i)d(n+ i)

 . (17)

Hereafter, we assume that N → ∞. Then, the second term
on the right side of Eq. (17) can be replaced by its mean1 as
follows:

N2R(n+N2dt) = N2R(n) +N2dtµ ⟨e(n)d(n)⟩ . (18)

Defining the change in R after updating N2dt times as dR,
we obtain

dR(t)

dt
= µ ⟨e(n)d(n)⟩ . (19)

From Eqs. (5), (9), (11), (12), and (19), the differential
equation for R can be obtained as

dR(t)

dt
= 2µ(1−R(t)). (20)

Second, we derive the differential equation for Q. Squaring
both sides of Eq. (6), and summing over k1 and k2, we obtain

N−1∑
k1=0

N−1∑
k2=0

h2(k1, k2;n+ 1)

=
N−1∑
k1=0

N−1∑
k2=0

h2(k1, k2;n)

+ 2µe(n)
N−1∑
k1=0

N−1∑
k2=0

h(k1, k2;n)x(n− k1)x(n− k2)

+ µ2e2(n)

N−1∑
k1=0

N−1∑
k2=0

x2(n− k1)x
2(n− k2). (21)

This can be rewritten as follows using Eqs. (4) and (13):

N2Q(n+ 1)

= N2Q(n) + 2µe(n)u(n)

+ µ2e2(n)
N−1∑
k1=0

N−1∑
k2=0

x2(n− k1)x
2(n− k2). (22)

Similarly to the case of R, by updating N2dt times in an
infinitely small time dt and summing all equations, we obtain

N2Q(n+N2dt) = N2Q(n) + 2N2dtµ ⟨e(n)u(n)⟩
+N2dtµ2

⟨
e2(n)

⟩
. (23)

From Eqs. (5), (9), and (11)-(14), we obtain

dQ(t)

dt
= 2µ ⟨e(n)u(n)⟩+ µ2

⟨
e2(n)

⟩
(24)

= 4µ(R(t)−Q(t))

+ µ2(2 + 2Q(t)− 4R(t) + σ2
ξ ). (25)

1This characteristic is called self-averaging in statistical mechanics[10].

The derived differential equations for R and Q (Eqs. (20)
and (25), respectively) can be solved analytically, and we
obtain

R(t) = 1− e−2µt (26)

Q(t) = 1 +

(
1 +

µσ2
ξ

2(µ− 2)

)
e2µ(µ−2)t −

µσ2
ξ

2(µ− 2)
− 2e−2µt.

(27)

Substituting these equations in Eq. (14), we can obtain the
exact solution of the MSE as⟨

e2(t)
⟩
=

(
2 +

µσ2
ξ

µ− 2

)
e2µ(µ−2)t −

2σ2
ξ

µ− 2
. (28)

Here, we used the fact that
⟨
d2(n)

⟩
= 1 in Eq. (14) when

N → ∞.

V. RESULTS AND DISCUSSION

From the exact solution, Eq. (28), found in the previous
section, we can obtain deep insight into the behavior of the
MSE. For example, a necessary and sufficient condition for
convergence of the MSE is 0 < µ < 2. In this case, the
steady-state value of the MSE is 2σ2

ξ/(2−µ). Additionally, if
there is no background noise, the MSE is⟨

e2(t)
⟩
= e2µ(µ−2)t = e−2(1−(µ−1)2)t, (29)

thus, the MSE takes a minimum value at µ = 1.0 regardless
of the value of t.

Figures 2 and 3 show the learning curves with σ2
ξ = 0,

i.e., the background noise is zero. In the figures, the solid
lines denote the theoretical results and the symbols denote the
values in numerical simulations. In the numerical simulations,
the tap length was set to N = 100, 200 and the mean values
of five trials are plotted. The open symbols show the results
for N = 100 and the filled symbols show the results for N =
200. As shown in Figs. 2 and 3, the MSE becomes minimum
when µ = 1.0 regardless of the value of t. In the numerical
simulations, a systematic error occurs as µ increases. This is
considered to be due to the finite-size effects [10] of the tap
length N . Certainly, as shown in Figs. 2 and 3, the simulation
results approach the theoretical results as the tap length N
increases.

Figure 4 shows the learning curves with σ2
ξ > 0, i.e.,

background noise exists. In the figure, the solid lines denote
the theoretical results and the symbols denote the values in
the numerical simulations. In the numerical simulations, the
tap length was set to N = 100 and the mean values of 100
trials are plotted. From Fig. 4, we can confirm that the rate of
decrease of the MSE in the early stage is greatest for µ = 1,
but after sufficient time has elapsed, the MSE becomes smaller
as µ decreases, thus the learning curves intersect.

From the above results, it was confirmed that the exact
solution of the MSE derived in this paper is in good agreement
with the results of the numerical simulations. The fact that
the exact solution of the learning curves could be derived is
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=0.1

Theory
Simulation N=200
Simulation N=500

=0.5

=1.0

Fig. 2. Learning curves (σ2
ξ = 0, µ = 0.1, 0.5, 1.0).
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Simulation N=500

Fig. 3. Learning curves (σ2
ξ = 0, µ = 1.0, 1.5, 1.7, 2.1).

significant from the both standpoints of obtaining deep insight
into the Volterra filtering and the application of it. In the
statistical-mechanical analysis of the linear FIR filter, the value
t, which is the number of updates n normalized by the tap
length N , is used as the time scale [6], [7], [8]. However, in
the analysis in this paper, it was necessary to normalize the
number of updates n by the tap length N2 as the time scale
t. This fact shows the essential slowness of the adaptation of
the Volterra filter.

VI. CONCLUSIONS

In this paper, we analyzed the dynamic behaviors of an
adaptive signal processing system based on the Volterra filter
by a statistical-mechanical method. On the basis of self-
averaging when the tapped delay line is assumed to be
infinitely long, we derived simultaneous differential equations
in a deterministic and closed form that describe the behaviors
of the macroscopic variables, and obtained the exact solution
by solving them analytically. In addition, the validity of the

 = 0.1

 = 1.0

 = 0.5

Theory
Simulation

Fig. 4. Learning curves (σ2
ξ = 0.1, µ = 0.1, 0.5, 1.0).

derived theory was confirmed by comparison with numerical
simulations. Analysis of the case of L ≥ 3 is one of our future
works.
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