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ABSTRACT
Structural sparsity is useful for variable and node selection in
distributed networks. In this paper, we propose a distributed
algorithm to solve the problem of a quadratic cost function
with mixed `1,2-norm regularization to promote the group-
sparsity of the solution. By introducing virtual pair nodes
to each actual node and by decomposing the cost function
to each nodes, we obtain a distributed optimization problem
on an extended graph model, which is further solved via the
PDMM algorithm. Numerical simulation results illustrate the
accurate convergence of the proposed algorithm to the cen-
tralized solution.

Index Terms— Distributed optimization, group-sparsity,
`1,2-norm regularization, primal-dual algorithm, PDMM.

1. INTRODUCTION

In recent years, distributed optimization has drawn increasing
attentions with the advances and developments of sensor net-
works, cloud computing, big data and neural networks [1–3].
It endows networks with abilities of parallel computation, lo-
cal data accessing and exchange, privacy protection, etc.

A variety of distributed optimization algorithms have
been proposed in the literature. Typical algorithms and strate-
gies include the dual-averaging algorithm [4], subgradient
algorithm [5], and Gossip algorithm [6], consensus strat-
egy [7–9], incremental strategy [10, 11], and diffusion strat-
egy [12–15]. In recent years, the primal-dual type algorithms
are also widely used for distributed optimization [16, 17].
Alternating Direction Methods of Multipliers (ADMM) is a
typical algorithm of this class, and it has received much atten-
tion due to its wide range of applications [18]. By utilizing the
Douglas-Rachford splitting [19] for augmented Lagrangian
to approach the saddle point, ADMM provides an efficient
solution for the distributed optimization problems. Alterna-
tively, utilizing a similar Douglas-Rachford splitting for the
so-called augmented primal-dual Lagrangian leads to Primal-
Dual Method of Multipliers. In several scenarios, PDMM
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exhibits a faster convergence rate over ADMM, meanwhile
provides a general framework for distributed optimization
with synchronous and asynchronous updating schemes [20].

Several applications based on PDMM have been pro-
posed, one typical example is on the design of distributed
speech enhancement algorithms. A distributed implemen-
tation of the robust linearly constrained minimum variance
(LCMV) beamformer is proposed in [21]. A distributed
minimum variance distortionless response (MVDR) beam-
former [22] and maximum signal to interference-plus-noise
ratio (max-SINR) beamformer are proposed for an ad hoc
microphone array [23]. The work [24] proposes a distributed
MVDR with node selection, where a quadratic cost function
regularized by the `1-norm is minimized via PDMM in a
distributed manner.

Inspired by [24], we further consider in this work the dis-
tributed optimization problem with the mixed `1,2-norm reg-
ularization [25–27]. This regularization is used to encourage
the parameter to have structural sparsity, so that nodes within
a same cluster tend to be activated or deactivated simultane-
ously. By decomposing quadratic costs to each node and in-
troducing virtual nodes for the term, we propose to solve this
problem in a distributed manner via PDMM. Numerical sim-
ulation results illustrate the effectiveness and accurate conver-
gence of the proposed algorithm.

2. PROBLEM FORMULATION AND SYSTEM
MODEL

Notation. Normal font x denotes scalars. Boldface small
letters x and capital lettersX denote column vectors and ma-
trices, respectively. The superscript (·)> denotes the trans-
pose of vectors or matrices. Operators

⋃
and

⋂
calculate

the union and intersection of two sets, respectively. Operator
col{·} stacks the column vectors entries on top of each other.
Operator max{·, ·} takes the maximum of its two arguments.
Nk denotes the neighbors of node k, including k, with cardi-
nality |Nk|.

Without loss of generality, we focus on the following real-
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Active cluster
Inactive cluster

Event 1

Event 2

(a) When detecting local events, clusters of nodes near
to these events are supposed to be activated as a whole.

Desired source

Interference 1

Interference 2

Active array
Inactive array

(b) Microphone arrays near to the desired source are
activated to perform the beamforming task, while oth-
ers can be deactivated.

Fig. 1. Motivation of promoting the group-sparsity structure in networks.

valued optimization problem1:

min
x

f(x) =
1

2
x>Rx− d>x+ α ‖x‖1,2, (1)

where R ∈ IRNM×NM is a symmetric, positive definite ma-
trix, d and x are column vectors of length NM ,

d = [d1, · · · , dNM ]> (2)

x = [x1, · · · , xNM ]>, (3)

and the mixed `1,2-norm is used to promote the group-sparsity
of the solution, with the regularization parameter α > 0. The
`1,2-norm of a vector x is defined as

‖x‖1,2 =
J∑

j=1

‖xGj‖2, (4)

where {Gj}Jj=1 are subsets of the whole index set G =

{1, 2, . . . , NM}, satisfying:

J⋃
j=1

Gj = G and Gj
⋂
Gl = Ø for j 6= l.

Such group sparsity is desired when we intend to activate
a cluster of nodes as a whole to detect some events in the
network, while other clusters are deactivated, see Fig. 1(a).
Another example is the distributed beamforming with micro-
phone arrays. Each array is then considered as a node in the
network, and it is supposed to activate some arrays instead of
individually activating some microphones, see Fig. 1(b).

1For complex-valued R,d and x, by resorting to the mapping in [28] to
transform quantities from CMN to IR2MN , we actually obtain an optimiza-
tion problem in real domain.

For simplicity, we assume uniform groups with group size
M , resulting in a group number J = N . We aim to solve (1)
in a distributed manner. Now Consider a network ofN nodes,
with each node is associated with a node variable xk, consist-
ing of a group of M entries of x. Without loss of generality,
the NM entries of x are assigned in order, with elements
(k − 1)M + 1 to kM being assigned to node k. Besides, the
nodes are connected by edges according to network topology
denoted by a undirected graph G = (V, E), where V is the
set of the nodes, E is the set of the edges, with cardinalities
V = |V| = N and E = |E|, respectively. If there exists an
edge between nodes k and `, we say (k, `) ∈ E . The binary
connection matrix of the network is denoted by C0,1, where
the (k, `)-th element is 1 if (k, `) ∈ E , and 0 elsewise.

3. DISTRIBUTED SOLUTION BASED ON PDMM

Without ambiguity, we denote f(x) in (1) by f for simplicity.
To derive a distributed solution, we firstly decompose the cost
function f(x) to local costs attached to each node. Consider-
ing to restrict communications within intermediate neighbor-
ing nodes, and utilizing the decomposition techniques pro-
posed in [24,29] for the first two terms on the right-hand-side
of (1), f is equivalently formulated as

min
x,xk,k∈V

f =
∑
k∈V

(
1

2
x>kRkxk − d>k xk

)
+ α ‖x‖1,2

subject to Ak`xk +A`kx` = 0, ∀(k, `) ∈ E (5)

where xk ∈ IRM ·|Nk| is the local estimate of x at node k over
its neighbor Nk, i.e., xk = col{x`}`∈Nk

, dk ∈ IRM ·|Nk| is
a vector of all zeros except M elements equals to dm with
index m ranging from (k − 1)M + 1 to kM , corresponding
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to elements of node k itself, i.e.

dk = [0 · · · 0 d(k−1)M+1 · · · dkM 0 · · · 0]>, (6)

andRk ∈ IRM ·|Nk|×M ·|Nk| is a local matrix defined by

Rk = (C2†
0,1 ⊗EM ) ◦R, (7)

with entries only belonging to Nk preserved in order so as to
have dimension M |Nk| ×M |Nk|. C2†

0,1 denotes the element-
wise inverse of the square of the network connection matrix
C0,1,EM is anM×M matrix with all elements equal to one,
symbols ⊗ and ◦ denote Kronecker product and Hadamard
product, respectively, and Ak` is a matrix with elements
{1, 0,−1} to keep the corresponding entries (node variable)
of xk and x` belonging to same nodes to be consistent so as
to keep consensus.

In order to facilitate distributed processing, the regulariza-
tion term is specifically treated by introducing virtual nodes
for each actual node. Considering the expression of the regu-
larization term, we assume that each node k has a virtual pair
node with index k +N , connecting to itself only by a virtual
edge. The set of virtual nodes is denoted by Vv , with node
indices from N + 1 to 2N , and there are N virtual edges in
total denoted by set Ev . Since the `1,2-norm is separable over
N groups, we may assign for each virtual nodeN+k the vec-
tor xN+k = [x(k−1)M+1 · · · xkM ]

> and its `2-norm as their
node variables and corresponding cost functions, along with
the consensus constraints to keep the estimate of node vari-
ables at a virtual node and the corresponding actual node to
be consistent, that is, xN+k+D`(N+k)x` = 0 withD`(N+k)

consisting of {1, 0,−1}. Therefore, (5) can be written equiv-
alently as

min
xk,xj ,k∈V,j∈Vv

f=
∑
k∈V

(
1

2
x>kRkxk−d>k xk

)
+
∑
j∈Vv

α‖xj‖2

subject to Ak`xk +A`kx` = 0, ∀(k, `) ∈ E
xj +D`jx` = 0, ∀(j, `) ∈ Ev. (8)

By introducing virtual nodes and virtual edges, we have an
extended graph model G′ = (V ′, E ′), with V ′ = V ⋃ Vv and
E ′ = E ⋃ Ev , thus we can rewrite (8) in a more compact form
via the extended graph model G′ as

min
xk,k∈V′

f =
∑
k∈V′

fk(xk)

subject to Bk`xk +B`kx` = 0, ∀(k, `) ∈ E ′ (9)

where

fk(xk) =


1
2x
>
kRkxk − d>k xk for k ∈ V

α ‖xk‖2 for k ∈ Vv,
(10)

and matrices Ak` and Dk` are replaced by Bk` correspond-
ingly.

After that, we propose to solve problem (9) over the ex-
tended graph model G′ = (V ′, E ′) via PDMM. We make no
distinction between virtual nodes and actual nodes in graph
G′, and Nk includes virtual node N + k. By introducing
for each edge (k, `) ∈ E ′ two auxiliary node-dependent vari-
ables λk|` and λ`|k, one for each node k and `, the augmented
primal-dual Lagrangian of PDMM is written as

LP(x,λ)=
∑
k∈V′

[
fk(xk)−

∑
`∈Nk

λ>`|k(Bk`xk)− f∗k (B>k λk)
]

+
∑

(k,`)∈E′

1

2
‖Bk`xk +B`kx`‖2 −

∑
(k,`)∈E′

1

2
‖λk|` − λ`|k‖2

(11)

where f∗k is the convex conjugate function of fk [30], λk

is obtained by vertically concatenating all λk|` for ` ∈ Nk,
andB>k is obtained by horizontally concatenating allB>k` for
` ∈ Nk. Utilizing the updating scheme of PDMM to approach
the saddle point of LP(x,λ), and resorting to proximity op-
erator [31] to derive a closed-form expression, the updating
equations of xk and λk|` are given as follows (with super-
script i denoting iteration index)

xi+1
k =



(
Rk +

∑
`∈Nk

B>k`Bk`

)−1×(
dk +

∑
`∈Nk

B>k`λ
i
`|k −

∑
`∈Nk

B>k`Bk`x
i
`

)
for k ∈ V

max{0, (1− α/‖pi‖2)} · pi for k ∈ Vv
(12)

with pi = λi
`|k −B`kx

i
`, and

λi+1
k|` = λi

`|k − (B`kx
i
` +Bk`x

i+1
k ) for k ∈ V ′ (13)

with all (k, `) ∈ E ′.
Finally, a fusion step is necessary to collect the estimate

of node variables at each actual node to obtain the final re-
sult. However, this procedure is performed only once. Be-
sides, since an actual node k and the corresponding virtual
node k+N are the same node physically, when used in asyn-
chronous updating scheme, the update of the actual node k
is followed by the update of the corresponding virtual node
k + N immediately. In addition, when there is only one el-
ement in each group, i.e., M = 1, the problem with group-
sparse regularization reduces to the case with the sparse regu-
larization derived in [24]. The complete algorithm is summa-
rized in Algorithm 1.

4. SIMULATION RESULTS

Now we present simulation results to validate the proposed
algorithm over a distributed network. We generate a network
consisting of N = 64 nodes with node variables of dimen-
sion M = 2, and the nodes are connected according to an
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Algorithm 1 The proposed algorithm.
Input: The matrixR and column vector d
Output: Group-sparse vector x

1: Set up the graph, decompose the cost function.
2: Initialize i := 0, xk and λk

3: while not converged do
4: for ∀k ∈ V ′ do
5: Update xk by

xi+1
k =


S−1k tik, for k ∈ V.

max{0, (1− α/‖pi‖2)} · pi,
for k ∈ Vv.

where

Sk = Rk +
∑
`∈Nk

B>k`Bk`,

tik = dk +
∑
`∈Nk

B>k`λ
i
`|k −

∑
`∈Nk

B>k`Bk`x
i
`,

pi = λi
`|k −B`kx

i
`.

6: Update λk by

λi+1
k|` = λi

`|k − (B`kx
i
` +Bk`x

i+1
k )

for k ∈ V ′.

7: end for
8: Check stop criterion
9: i← i+ 1

10: end while
11: Fuse xk

arbitrary manner. Thus the quantities R and d used in the
simulation are of dimension 128 × 128 and 128 × 1, respec-
tively, and the group size is 2. Besides, to better illustrate
the degree of group-sparsity varying with increased regular-
ization parameter α, we set first the positive definite matrix
R and the optimal solution x? of (1) without a regularization
term, then obtained vector d via d = Rx?, and the entries
of x? were chosen to grow slowly along its dimension. And
the nodes with non-zero valued node variables were named as
active nodes.

In the first experiment, the obtained distributed solution
xi

d at each iteration i was compared with the centralized solu-
tion xc, which is the solution of problem (1) computed via the
proximal gradient method after 100 iterations. Fig. 2 shows
the iteration of Error(i) = ‖xi

d − xc‖2 over time instant i
with the regularization parameter α = 0, 3, 6, 9, respectively,
and Fig. 3 illustrates the iterations of the corresponding cost
values (1) after logarithm transform. Both Fig. 2 and Fig. 3
illustrate the accurate convergence of the distributed solution

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

E
rr

o
r(
i)
=

‖x
i d
−

x
c
‖2

Iterations

α = 0
α = 3

α = 6
α = 9

Fig. 2. Convergence of the distributed solution xi
d towards the

centralized solution xc over iterations with the regularization
parameter α = 0, 3, 6, 9, respectively.
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Fig. 3. Convergence of the cost value for distributed solu-
tion (full line) towards that of the centralized solution (dotted
line, obtained after 100 iterations via the proximal gradient
method) with the regularization parameter α = 0, 3, 6, 9, re-
spectively.

to the centralized solution. Besides, for different regulariza-
tion parameters, the number of iterations required for the dis-
tributed solution to converge to the centralized solution within
the precision range of 10−2 are given in Fig. 4. It can be ob-
served that the number of iterations grows with the increasing
of regularization parameter α in general.

In the second experiment, we examine the influence of the
regularization parameter α to the degree of the group-sparsity
in the distributed solution xd and the resulting bias ∆J from
the minimal cost Jmin = 1

2x
?>Rx? − d>x?, where the bias

is defined as ∆J = ( 1
2x
>
d Rxd − d>xd) − Jmin. The re-

sults are shown in Fig. 5, we can see that the number of active
nodes decreases with the increase of regularization parameter
α, which means the degree of group-sparsity grows, while the
resulting bias ∆J becomes larger. Besides, for a sufficiently
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large regularization parameter, the distributed solution xd be-
comes an all-zero vector. This implies that the proposed al-
gorithm can achieve the desired degree of group-sparsity as
long as a proper regularization parameter is chosen.

5. CONCLUSIONS

In this paper, we proposed a distributed algorithm to solve
the problem of a quadratic cost function with `1,2-norm reg-
ularization. By introducing virtual pair nodes to each actual
node and decomposing the cost function, we obtained an ex-
tended graph model and solved the optimization problem on
the graph via PDMM. Numerical simulation results showed
the accurate convergence of the proposed algorithm to the
centralized solution. In future works, the proposed algorithm

will be used to design distributed MVDR beamformers with
the group-sparsity property.
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