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Abstract—In this paper, we propose a nonlinear beamforming
method for a phased array weather radar (PAWR). Conventional
beamforming methods are linear in the sense that a signal arriv-
ing from each elevation is reconstructed by computing a weighted
sum of the received signals. For distributed targets such as rain-
drops, however, the number of backscattered signals is very large
differently from the case for point targets. Thus, the spatial res-
olution of the linear methods is limited. To improve the spatial
resolution, we focus on two characteristics of the signals from the
distributed targets. One is the continuity of the reflection intensity
in the time and spatial domains. The other is the narrow band-
width in the frequency domain. These can be expressed as group-
sparsity of certain matrices, and we reconstruct the signals by sol-
ving a convex optimization problem based on the group-sparsity.
Simulations using real PAWR data show that the proposed method
captures fine variation of precipitation profile with high precision.

I. INTRODUCTION

Phased array weather radar (PAWR) [1], [2] has been devel-
oped to rapidly detect hazardous weather phenomena such as a
thunderstorm with heavy rain. A classical parabolic radar trans-
mits a pencil beam and receives backscattered signals within a
narrow range of elevation angles. On the other hand, a PAWR
transmits a fan beam and receives backscattered signals within
a wide range of elevation angles simultaneously by an antenna
array. Then, the backscattered signals within the narrow ranges
are reconstructed from the received signals of the antenna array
by digital beamforming [3]–[5]. This is the key technology in
the PAWR because it gets rid of the mechanical vertical scan
and hence the temporal resolution can be drastically improved
in weather observation. Indeed, the PAWR developed at Osaka
University [1] observes the weather in a hemisphere of a radius
60 kilometers in 30 seconds, while the classical parabolic radar
requires 5 to 10 minutes for a similar observation [6].

Major beamforming methods [3]–[5] reconstruct the signal
arriving from each elevation as a (complex) weighted sum of
the received signals. In particular, Capon beamforming [4] is
a famous method that can adaptively reduce the influence of
sidelobes if a sufficient number of pulses are transmitted. For
fast weather observation, however, the number of pulses should
be as small as possible. To deal with such a situation, the min-
imum mean square error (MMSE) beamforming [5] was pro-
posed. In this method, differently from Capon’s method, the
sample covariance matrix of the received signals is not used,
and hence the signal arriving from each elevation is robustly
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reconstructed even if the number of pulses is small. Such beam-
forming methods were developed originally for observation of
point targets, but targets of the PAWR are distributed targets
such as raindrops. In this case, the number of backscattered sig-
nals is very large, and the spatial resolution of the above linear
methods [3]–[5] is limited, i.e., fine variation of the reflection
intensity corresponding to precipitation profile is not captured.

To overcome the limitation of the linear methodology, this
paper proposes a nonlinear beamforming method. We formu-
late the beamforming as an ill-conditioned inverse problem. To
solve it, we exploit two properties of signals from distributed
targets. One is the continuity of the reflection intensity in the
time and spatial domains. The other is the narrow bandwidth
in the frequency domain. These properties can be expressed as
group-sparsity of certain two matrices, and we reconstruct the
signals by minimizing a cost function that consists of the data-
fidelity term and two group `1-norms. The optimal solution is
effectively computed with the alternating direction method of
multipliers (ADMM) [7]. Numerical experiments based on real
PAWR data show the effectiveness of the proposed nonlinear
beamforming in comparison with the linear methods [3]–[5].

II. PRELIMINARIES

Let R and C be the sets of all real numbers and complex
numbers, respectively. We use j ∈ C to denote the imaginary
unit, i.e., j =

√
−1. For any x ∈ C, x̄ denotes its complex con-

jugate, and |x| :=
√
xx̄ denotes its absolute value. We write

vectors with lowercase boldface letters and matrices with capi-
tal letters. We use In ∈ Rn×n to denote the identity matrix of
order n. The transpose and the Hermitian transpose of vectors
or matrices are expressed as (·)T and (·)H, respectively. The `2-
norm (or the Euclidean norm) of x := (x1, x2, . . . , xn)T ∈ Cn
is defined as ‖x‖2 :=

√∑n
i=1 |xi|2, and a group `1-norm with

non-overlapping groups is defined as ‖x‖G1 :=
∑nG
i=1‖xGi‖2,

where xGi (i = 1, 2, . . . , nG) are sub-vectors of x divided by
{Gi}nGi=1 s.t.

⋃nG
i=1 Gi = {1, 2, . . . , n} and Gi∩Gi′ = ∅ (i 6= i′).

We use E[·] to denote the expected values of random variables.

A. Signal Model

First of all, we give a signal model for observation ofK point
targets. Let a PAWR have an N -element uniform linear array
with the inter-element spacing d [m]. A plane wave signal scat-
tered from the kth point target impinges on the antenna array at
an angle θ?k ∈ [θmin, θmax] (θ?1 < θ?2 < · · · < θ?K [rad]). Then,
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the lth time sample of the received signal yl ∈ CN is given by

yl =
K∑
k=1

x?k,la(θ?k) + vl (l = 1, 2, . . . , L), (1)

where x?k,l ∈ C is the lth sample of the kth plane wave signal
s.t. E[x?k,l] = 0, a(θ?k) ∈ CN is the steering vector defined by

a(θ) :=
(
1, e−j

2πd sin θ
λ , e−j

4πd sin θ
λ , . . . , e−j

2(N−1)πd sin θ
λ

)T
with the carrier wavelength λ [m], and vl ∈ CN is white Gaus-
sian noise whose covariance matrix is Rv :=E[vlv

H
l ] = σ2

vIN .
On the other hand, our targets such as raindrops are called

distributed targets, which are supposed to exist continuously
(strictly speaking, a sufficient number of raindrops exist within
the antenna beamwidth). Let us observe the distributed targets
while dividing the whole angular interval [θmin, θmax] into M
sub-intervals [θm − ∆θ

2 , θm + ∆θ
2 ], where ∆θ := θmax−θmin

M
and θm := θmin + (m− 1

2 )∆θ (m = 1, 2, . . . ,M ). Therefore,
instead of (1), we use the following signal model

yl =
M∑
m=1

xm,lsm + vl = Sxl + vl, (2)

where xm,l ∈ C s.t. E[xm,l] = 0 is the lth sample of the sum
of plane wave signals in the sub-interval [θm− ∆θ

2 , θm+ ∆θ
2 ],

xl := (x1,l, x2,l, . . . , xM,l)
T ∈ CM , sm := a(θm) ∈ CN , and

S := (s1, s2, . . . , sM ) ∈ CN×M . Furthermore, we can derive
(1) from (2) by redefining K (≤M ) as the number of the sub-
intervals [θm− ∆θ

2 , θm + ∆θ
2 ] where plane wave signals exist,

and θ?k as the center of such a sub-interval. In PAWR systems,
θm means the mth elevation angle, and the reflection intensity

p :=
(
E
[
|x1,l|2

]
, E
[
|x2,l|2

]
, . . . , E

[
|xM,l|2

])T ∈ RM

corresponds to precipitation profile in the elevation angles.

B. Linear Beamforming
Beamforming is an estimation problem of xl from yl in (2).

Major beamforming methods [3]–[5] estimate xl by multiply-
ing complex weights wm ∈ CN (m = 1, 2, . . . ,M ) and yl as

x̂l := (x̂1,l, x̂2,l, . . . , x̂M,l)
T

:= (wH
1 yl,w

H
2 yl, . . . ,w

H
Myl)

T = Wyl. (3)

In this paper, the methods based on (3) are called the linear
beamforming. Note that the least squares (LS) method

x̂LS,l := WLS yl := S†yl (4)

does not necessarily work well, even if N ≥M , because S is
ill-conditioned when ∆θ is smaller than the antenna beamwidth
that is determined by the antenna size, where S† ∈ CM×N is
the Moore-Penrose pseudoinverse of S. In the following, we
introduce three linear methods, Fourier (FR) beamforming [3],
Capon (CP) beamforming [4], and MMSE beamforming [5].

1) FR Beamforming: FR beamforming [3] is the most basic
method and its complex weight vector is defined by

wFR,m :=
sm
N

(5)

independently of yl. The weight vector wFR,m is a matched
filter that maximizes the signal-to-noise ratio E[|xm,lwH

msm|2]
E[|wH

mvl|2] .

However, from

x̂FR,m,l :=
sH
m

N
yl = xm,l+

1

N

∑
θ?k 6=θm

x?k,ls
H
ma(θ?k)+

1

N
sH
mvl,

the precipitation profile is overestimated for many elevation
angles θm since

p̂FR,m :=
1

L

L∑
l=1

|x̂FR,m,l|2 � E
[
|xm,l|2

]
+
σ2
v

N

often holds for m satisfying ∃θ?k 6= θm |sH
ma(θ?k)| 6≈ 0.

2) CP Beamforming: CP beamforming [4] is an adaptive
method and minimizes 1

L

∑L
l=1 |x̂m,l|2 = wH

mR̂ywm under
the condition wH

msm = 1 to avoid the above overestimation,
where R̂y := 1

L

∑L
l=1 yly

H
l ∈ CN×N is the sample covariance

matrix of the zero-mean random variable yl. The weight vector
wCP,m is defined as the solution of the optimization problem

minimize
wm

wH
mR̂ywm subject to wH

msm = 1

by

wCP,m :=
R̂−1
y sm

sH
mR̂
−1
y sm

(6)

if L ≥ N (strictly speaking, if rank(R̂y) = N ). In particular,
if N ≥ K + 1 and L is sufficiently large, then we have

p̂CP,m :=
1

L

L∑
l=1

|x̂CR,m,l|2 ≈ E
[
|xm,l|2

]
+ σ2

v‖wCP,m‖22

for all m since ∀θ?k 6= θm |wH
CP,ma(θ?k)| ≈ 0 holds. However,

if L is not large, then the precipitation profile is often under-
estimated [5]. Moreover, if L < N , R̂−1

y cannot be computed.
3) MMSE Beamforming: MMSE beamforming [5] was de-

veloped to improve the estimation accuracy in case of small L.
This method approximately solves the optimization problem

minimize
wm

E
[
|xm,l −wH

myl|2
]

subject to wH
msm = 1.

Assuming E[xm,lx̄m′,l] = E[xm,l]E[x̄m′,l] = 0 if m 6= m′,
the exact solution of the above optimization problem is

wMMSE,m :=
R−1
y sm

sH
mR
−1
y sm

, (7)

where Ry := E[yly
H
l ] is the covariance matrix of yl. By using

the covariance matrix Rx := E[xlx
H
l ] of xl, Ry is expressed

as Ry = SRxS
H+σ2

vIN . Moreover, Rx = diag(p) can be ap-
proximated by R̂x � IM := ( 1

L

∑L
l=1 xlx

H
l ) � IM , where �

denotes the Hadamard product. As a result, the weight vector
wMMSE,m in (7) is approximated, from the initial estimate
x̂

(0)
MMSE,l = x̂FR,l = SHyl/N , by iteratively computing

R(i)
x =

(
1

L

L∑
l=1

x̂
(i)
MMSE,l x̂

(i)H
MMSE,l

)
� IM

R(i)
y = SR(i)

x SH + σ2
vIN

w
(i+1)
MMSE,m =

R
(i)−1
y sm

sH
mR

(i)−1
y sm

(m = 1, 2, . . . ,M )

x̂
(i+1)
MMSE,l = W

(i+1)
MMSE yl (l = 1, 2, . . . , L)

(8)
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for i ≥ 0 until δ(i+1) = 1
M

∑M
m=1

∑L
l=1 |x̂

(i+1)
MMSE,m,l− x̂

(i)
MMSE,m,l|

2∑L
l=1 |x̂

(i)
MMSE,m,l|2

becomes sufficiently small. In this method, even for small L,
Ry can be stably estimated. However, if K is close to N or
larger than N , then the estimation accuracy degrades, i.e., fine
variation of the precipitation profile cannot be captured.

III. NONLINEAR BEAMFORMING VIA CONVEX
OPTIMIZATION BASED ON DOUBLE GROUP-SPARSITY

In this section, we propose a nonlinear beamforming method
based on convex optimization. First, we gather xl and yl into
X := (x1,x2, . . . ,xL) = (x̃1, x̃2, . . . , x̃M )T ∈ CM×L and
Y := (y1,y2, . . . ,yL) ∈ CN×L, respectively, where x̃m :=
(xm,1, xm,2, . . . , xm,L)T ∈ CL. Then the beamforming can be
translated into an estimation problem of X from Y , and the
data fidelity in (2) can be evaluated by the Frobenius norm as

‖Y − SX‖2F :=
L∑
l=1

‖yl − Sxl‖22. (9)

In the following, after describing two characteristics on x̃m as
group-sparsity of certain matrices, we solve a convex optimiza-
tion problem based on (9) and the double group-sparsity.

A. Continuity of Precipitation Profile in Elevation Angles

Many PAWR systems employ contiguous pair sampling [8].
In such a system, the pulse repetition time (PRT) is designed
by TPRT := 2rmax

c , where rmax is the maximum range to be
observed and c is the speed of light. For example, the PAWR
system developed at Osaka University observes the weather in
a hemisphere of a radius 60 kilometers [1] and hence TPRT ≈
0.0004 [s]. If L is not large, the total observation time LTPRT

is sufficiently short to consider θ?k to be constant for the time
index l = 1, 2, . . . , L. Therefore, x̃m becomes a dense vector
if θm = θ?k for some k, and x̃m = 0 otherwise. Furthermore,
from the continuity of precipitation profile, if x̃m = 0, it is
highly possible that x̃m−1 and x̃m+1 are also 0. This property
is expressed as group-sparsity of X and evaluated by

‖X‖G1
1 :=

M/q∑
i=1

∥∥(x̃T
(i−1)q+1, x̃

T
(i−1)q+2, . . . , x̃

T
iq)

T
∥∥

2
(10)

with the use of a factor q ≥ 1 of M .

B. Narrow Bandwidth of Signals from Distributed Scatterers

The power spectral density of the backscattered signal from
the distributed target, such as raindrops, fog droplets and cloud
droplets, can be modeled by a Gaussian function according to
the central limit theorem [9], [10]. The first raw moment of the
normalized power spectral density, i.e., the center of the above
Gaussian function, is called the mean Doppler frequency (or
the mean Doppler shift). The square root of the second central
moment, i.e., the standard division of the Gaussian function, is
called the Doppler frequency spectrum width (see Fig. 1).

Define the normalized discrete Fourier transform matrix by
F := 1√

L
(f0,f1, . . . ,fL−1) ∈ CL×L, where

fi :=
(
1, e−j

2πi
L , e−j

4πi
L , . . . , e−j

2(L−1)πi
L

)T ∈ CL.
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Fig. 1. Power spectral density model of backscattered signals from distributed
targets. Blue and red lines respectively depict the power spectral density and
E[|um,l|2] (l = 1, 2, . . . , L := 20). In the graph, m is omitted for simplicity.

Then the vector um :=F x̃m = (um,1, um,2, . . . , um,L)T ∈CL
is group-sparse, i.e., the indices l having large |um,l| concen-
trate in the vicinity of the mean Doppler frequency as shown
in Fig. 1. However, we cannot specify the center and the width
of such a group because the mean Doppler frequency and the
spectrum width are different for each elevation angle θm. Al-
ternatively, we divide um into L overlapping blocks of size b:

bm,1 := (um,1, um,2, . . . , um,b)
T ∈ Cb

bm,2 := (um,2, um,3, . . . , um,b+1)T ∈ Cb
...

bm,L−b+1 := (um,L−b+1, um,L−b+2, . . . , um,L)T ∈ Cb

bm,L−b+2 := (um,L−b+2, . . . , um,L, um,1)T ∈ Cb
...

bm,L := (um,L, um,1, . . . , um,b−1)T ∈ Cb

under the periodic boundary condition. As a result, if we define
a matrix B ∈ RbL×L satisfying

BF x̃m = Bum = (bT
m,1, b

T
m,2, . . . , b

T
m,L)T ∈ CbL,

the matrix BFXT becomes group-sparse without overlapping,
and this property can be evaluated by a group `1-norm

‖BFXT‖G2
1 :=

M∑
m=1

L∑
l=1

‖bm,l‖2. (11)

C. The Proposed Nonlinear Beamforming
On the basis of (9), (10), and (11), we estimate X by solving

a convex optimization problem

minimize
X

1

2
‖Y − SX‖2F + ν1‖X‖G1

1 + ν2‖BFXT‖G2
1 (12)

with the use of ADMM [7] (see Appendix), where ν1 > 0 and
ν2 > 0. The problem in (12) is expressed as an ADMM-form

minimize
X∈X ,Z∈Z

1

2
‖Y − SX‖2F + ν1‖Z1‖G1

1 + ν2‖Z2‖G2
1

subject to Z :=

[
Z1

Z2

]
= L(X) :=

[
IM

BF ◦ T

]
(X), (13)
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where X := CM×L, Z := CM×L×CbL×M , T is the transpose
operator, ◦ denotes the composition of mappings, and convex
functions f and g in (19) are respectively defined by f(X) :=
1
2 ‖Y − SX‖

2
F and g(Z) := ν1 ‖Z1‖G1

1 + ν2 ‖Z2‖G2
1 .

On the first line in (20), since X is updated as the solution
of a least squares problem, the solution X(i+1) satisfies(
SHS +

1

γ
L∗ ◦ L

)
(X(i+1)) = SHY +

1

γ
L∗(Z(i) −D(i)),

(14)
where L∗ : Z → X is the adjoint operator of L and defined
by L∗(Z) := IM (Z1) + T ◦ FHBT(Z2) = Z1 + ZT

2 BF
H.

Moreover, the composite mapping L∗ ◦ L is expressed as

L∗ ◦ L =
[
IM T ◦ FHBT

] [ IM
BF ◦ T

]
= IM + T ◦ FHBTBF ◦ T
= IM + T ◦ FH(bIL)F ◦ T
= IM + T ◦ bIL ◦ T = (1 + b)IM . (15)

By substituting (15) into (14), X(i+1) is computed by

X(i+1) =

(
SHS +

1 + b

γ
IM

)−1

·
(
SHY +

1

γ

(
Z

(i)
1 −D

(i)
1 +

(
Z

(i)T
2 −D(i)T

2

)
BFH

))
. (16)

Next, on the second line in (20), since the computation of g(Z)
is divided into ν1‖Z1‖G1

1 and ν2‖Z2‖G2
1 , Z(i+1) is computed by{

Z
(i+1)
1 = prox

γν1‖·‖
G1
1

(
X(i+1) +D

(i)
1

)
Z

(i+1)
2 = prox

γν2‖·‖
G2
1

(
BFX(i+1)T +D

(i)
2

) (17)

with the use of the proximity operators of the group `1-norms
in (21). Finally, on the third line in (20), D(i+1) is computed by{

D
(i+1)
1 = D

(i)
1 +X(i+1) − Z(i+1)

1

D
(i+1)
2 = D

(i)
2 +BFX(i+1)T − Z(i+1)

2

(18)

and the optimal solution of the problem in (13) is obtained by
repeating (16)–(18) until a convergence condition is satisfied.

IV. NUMERICAL EXPERIMENTS

To show the effectiveness of the proposed nonlinear beam-
forming, we conducted simulations based on the real reflection
intensity, observed by the PAWR at Osaka University, in Fig. 2.
At the range r = 7.5 [km], we picked out 55 data between
θmin = −15◦ [deg] and θmax = 30◦ [deg]. The true reflection
intensity p was created by the cubic spline interpolation of this
55 samples followed by adding Gaussian random numbers. We
set λ = 0.0318 [m], d = 0.0165 [m], and TPRT = 0.0004 [s].
Random signals x̃m were generated in the frequency domain
so that E[|um,l|2] would follow a Gaussian distribution, which
was wrapped into [− 1

2TPRT
, 1

2TPRT
], on the basis of [9]. The

mean Doppler frequency for each elevation angle was gener-
ated from a uniform distribution U(− 1

2TPRT
, 1

2TPRT
), and the

Doppler frequency spectrum width was simply fixed to σ =
125.7 [Hz]. The standard division of vl was set to σv =

√
5.

-30°-7.5°15°37.5°60°0.1 2.5 5 7.5 100 5 10 15 20 25 30 35 40Reflection Intensity [dB]2010 30 40
Fig. 2. Real PAWR data.

TABLE I
MEAN OF THE NORMALIZED ERRORS [%]

OF EACH BEAMFORMER IN 10 TRIALS

Method
∆θ = 45◦/110 ∆θ = 45◦/160

K = 93 < N K = 136 > N

L = 128, 20 L = 128, 20

LS 73.64, 74.39 93.77, 92.17

FR 104.2, 104.1 142.5, 143.3

CP 99.85, —— 100.1, ——

MMSE 77.56, 74.24 115.2, 111.9

Proposed 20.04, 24.63 43.29, 47.35

For1 N = 128 and M = 110, 160, we compared the proposed
method with LS in (4),2 FR in (5), CP in (6), and MMSE in
(8), in cases of L = 128 and L = 20. The parameters in (12)
were set to ν1 = 0.0025N

√
qL

M and ν2 = 0.25 N
M
√
b
. The group

sizes in ‖·‖G1
1 and ‖·‖G2

1 were set to q = 5 for M = 110, q = 8
for M = 160, b = 3 for L = 20, and b = 10 for L = 128.

Table I summarizes the average, for each situation, of the
normalized errors 100 ‖X̂−X‖F/‖X‖F [%] in 10 trials, where
the results of CP are empty for L = 20 because R̂−1

y cannot be
computed. From Table I, we can see that the proposed method
reduced the normalized errors by 70–80 [%] when M = 110
and 50–70 [%] when M = 160. Figures 3, 4, 5, and 6 depict
the reflection intensityE[|xm,l|2] and estimates 1

L

∑L
l=1 |x̂m,l|2

for (M,L) = (110, 128),(110, 20),(160, 128),(160, 20). When
M = 110, the proposed method accurately reconstructed the
true reflection intensity in case of L = 128. LS and FR failed
in estimation particularly from 23◦ [deg] to 27◦ [deg] because
the reflection intensity should be 0 in this interval. CP severely
underestimated the reflection intensity in the whole angles, and
MMSE reconstructed only a rough shape of the reflection in-
tensity. Even in case of L = 20, the proposed method achieved
the highest estimation accuracy though the reflection intensity
was underestimated at several angles. When M = 160, the pro-
posed method could reconstruct the true reflection intensity at
many angles in case of L = 128. In case of L = 20, although
the proposed method achieved the highest estimation accuracy,
the estimated reflection intensity became 0 in several angles.

V. CONCLUSION

In this paper, we have proposed a nonlinear beamforming
method for a PAWR. Differently from a radar that observes
point targets, the PAWR receives a lot of backscattered signals
from distributed targets, and the performance of linear beam-
forming methods degrades. We regarded the beamforming as
an inverse problem and estimated the backscattered signals by
solving an optimization problem based on the group-sparsity.
Numerical experiments showed that, compared with the linear
beamforming, the proposed method can reconstruct precipita-
tion profile with higher accuracy from small time samples.

1When M = 110, the number of the sub-intervals, where signals exist, is
K = 93 < N . On the other hand, when M = 160, the number of the sub-
intervals is K = 136 > N , and hence it is very difficult to estimate X .

2To avoid the numerical instability in the computation of S†, we truncated
the singular values of S that are smaller than 0.005.
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Fig. 3. Estimates of the reflection intensity for (M,L) = (110, 128).
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Fig. 4. Estimates of the reflection intensity for (M,L) = (110, 20).

APPENDIX
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Let us consider the following convex optimization problem:

minimize
x∈X, z∈Z

f(x) + g(z) subject to z = L(x), (19)

where X and Z are finite-dimensional Hilbert spaces with the
standard inner products, L : X → Z is a linear mapping, and
functions f : X → R∪{∞} and g : Z → R∪{∞} are proper,
lower semicontinuous, and convex.3 The alternating direction
method of multipliers (ADMM) [7] solves the problem in (19)
by iteratively computing, from any (z(0),d(0)) ∈ Z × Z ,

x(i+1) = argmin
x∈X

f(x) +
1

2γ
‖z(i) − L(x)− d(i)‖2Z

z(i+1) = proxγg(L(x(i+1)) + d(i))

d(i+1) = d(i) + L(x(i+1))− z(i+1)

(20)

for i ≥ 0, where γ > 0, ‖·‖Z is the Euclidean norm introduced
by the standard inner product in Z , and proxγg : Z → Z is
the proximity operator defined by

proxγg(y) := argmin
z∈Z

g(z) +
1

2γ
‖z − y‖2Z .

If g is a group `1-norm with non-overlapping groups {Gi}nGi=1,
from g(z)+ 1

2γ ‖z−y‖2Z =
∑nG
i=1(‖zGi‖2 + 1

2γ ‖zGi−yGi‖
2
2),

the computation of proxγg is divided into those of proxγ‖·‖2 .

3A function f : X → R ∪ {∞} is called proper, lower semicontinuous,
and convex if dom(f) := {x ∈ X | f(x) < ∞} 6= ∅, lev≤α(f) :=
{x ∈ X | f(x) ≤ α} is closed for all α ∈ R, and f(λx + (1 − λ)y) ≤
λf(x) + (1− λ)f(y) for all x,y ∈ X and all λ ∈ (0, 1), respectively.
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Fig. 5. Estimates of the reflection intensity for (M,L) = (160, 128).
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Fig. 6. Estimates of the reflection intensity for (M,L) = (160, 20).

Therefore, proxγ‖·‖G1 (y) can be computed for each group by

proxγ‖·‖2(yGi) =


‖yGi‖2 − γ
‖yGi‖2

yGi if ‖yGi‖2 > γ,

0 if ‖yGi‖2 ≤ γ.
(21)
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