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Abstract—Accurate alignment between singing signal and its
spoken lyrics at frame-level is imperative to several applications
in singing signal processing. As the acoustic characteristics of
speech and singing signals differ significantly, finding the tempo-
ral alignment between them is not easy. In this paper, we study
the characteristics of speech and singing signals to identify their
common properties to facilitate temporal alignment. We observe
that: (i) the characteristics of excitation source in human voice
production mechanism largely vary with speaking and singing
and, (ii) for the same linguistic content, speaking and singing
signals present very different formant patterns. Based on these
observations, we formulate a set of tandem features that represent
only those characteristics consistent between speech and singing
signals. Such tandem features are used in dynamic time warping
for temporal alignment, and in a speech-to-singing conversion
experiment. In both objective and subjective evaluations, we show
that the proposed tandem features are significantly superior to
the baseline features in temporal alignment.
Index Terms: Singing voice, Singing formant, Low-time
cepstrum, Tandem features, Temporal alignment.

I. INTRODUCTION

Temporal alignment between speech and singing signals of
the same linguistic content is extremely crucial in various ap-
plications including speech-to-singing (STS) voice conversion,
audio search of songs, content retrieval from songs databases
and singing signal processing of amateur singers. Particularly
in STS, the temporal alignment between source speech and
target singing template/musical score significantly affects the
processes of prosody and spectral transformations from speech
to singing signals. As STS is becoming a key enabling tech-
nology for many innovative applications such as personalized
singing, speech therapy and training & assessment of singing,
there is a strong call for such accurate temporal alignment.

However, temporally aligning speech and singing signals
is not a trivial problem. Though the human voice produc-
tion mechanism generating speech and singing signals is the
same, its characteristics vary vividly with voice styles. The
particularly high placement of larynx forming singing for-
mant [1], [2], the abrupt and consistent changes in subglottal
pressure [3], carefully obtained pitch contractions [4], etc.
are prominent features of voice production system used by
a trained singer to produce different musical notes [5], [6]. In
addition, fine variations in pitch and intensity like, overshoot,
preparation, vibrato, tremolo, etc. are also used by singers to
improve the naturalness of singing [4], [5]. These features play
a substantial role in establishing the unique characteristics of

singing, which differentiate singing from speech spectra, and
make speech to singing alignment difficult.

Lyrics-singing signals alignment has been extensively stud-
ied in music information retrieval with different techniques
such as adapted hidden Markov model (HMM), or aligning
vowel onsets to lyrical notes [7]–[12]. The strategy of detecting
and matching vowel onset points was used for aligning singing
signals to musical notes [13], [14]. Singing vocals-musical
notes alignment was also performed using dynamic time warp-
ing (DTW) using spectral features [15] and by matching care-
fully designed performance trajectories [16]. The alignment of
two singing signals was attempted for voice conversion using
DTW and phoneme & musical context recognizers [10], [17],
[18]. All these methods deal with aligning singing audio with
lyrics, musical notes or other singing signals. However, for
STS conversion, singing signals have to be aligned with speech
signals of the same linguistic content.

One way of time-synchronizing speech to singing signals
is by manual segmentation and labeling [19]–[21]. A dual
pass alignment between speech and singing, exploiting speaker
similarities, was also proposed for increased accuracy [22],
[23]. In this method, an arbitrary segment of speech uttered by
a speaker is aligned with speech signal produced by a singer
(first pass). Later, the singer’s speech is temporally aligned
with the singing signal, by levying on speaker similarity
(second pass). Yet, the synchronization information in the
second pass of the dual alignment scheme was assumed to
be available by manual intervention [24]. Such schemes are
exhaustive and expensive for temporal alignment. There has
been an attempt to automate the temporal alignment by using
singing signal adapted HMMs [4], [25]. Unfortunately, this is
possible only when HMM acoustic models are available.

In this paper, we present an automatic temporal alignment
strategy between speech and singing signals, which neither
requires any manual intervention nor relies on any speaker
similarity characteristics. We attempt to solve the alignment
problem using signal processing techniques, without using any
statistical acoustic modeling tools. Here, we study the com-
mon and different characteristics between speech and singing
signals. We then formulate the tandem features of signals that
capture only the consistent characteristics thereby, effectively
nullifying the effects of inconsistent characteristics between
speech and singing signals. Temporal alignment with DTW
using the tandem features is performed for STS conversion.
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The objective and subjective experiments reported in this paper
exhibit the effectiveness of the proposed tandem features over
the baseline features.

The rest of the paper is organized as follows: In Section II,
we explain a detailed study of various characteristics of speech
and singing signals. In Section III, we elaborate the extraction
of tandem features from the consistent set of characteristics
between speech and singing signals for temporal alignment.
The Section IV reports the experiments on temporal alignment
and its’ application in STS conversion. In Section V, we
conclude the study and summarize its’ contributions to STS
conversion.

II. ANALYSIS OF SPEECH AND SINGING SIGNALS

The human voice production system, for both speech and
singing signals, is widely described by the source-filter model
[26]. The vocal tract system takes the excitation from lungs as
input and, generates speech or singing as outputs. Here, we use
the source-filter model to compare and contrast characteristics
of speech and singing signals.

A. Source characteristics

The excitation source in human voice production is con-
stituted by the air flow from lungs, modulated at the glottis
[26]. In singing signal production, the air consumption is
much higher than that in speech production, resulting in
larger lung volumes and hence longer breath cycles [5]. This
enables a trained singer to vary subglottal pressure rapidly
and accurately to produce target musical notes of intended
loudness. The subglottal pressure plays a significant role in
controlling the fundamental frequency (F0) and intensity in
singing, whereas, it does not have any considerable role in
deciding the F0 in speaking [5].

The source characteristics largely vary across singing and
speaking voice styles. Short segments of speech and singing
signals are shown in Figure 1(a) and (b), respectively, and the
corresponding F0 contours are shown in Figure 1(e) and (f),
respectively. This figure reveals the large margin of variation
among F0 contours of speech and singing, as F0 in singing
signal is regulated by target melody, while F0 in speech is
not. Also, the F0 contours in singing are affected by vibrato,
overshoot and preparation, as can be seen from Figure 1(f)
around 0.5 s (vibrato), 2.25 and 2.5 s (overshoot) and 2 and
3 s (preparation). In addition, the loudness of speech and
singing signals differ from each other, owing to the wide
range of intensity in singing. As we are in search of the
signal properties consistently appearing across singing and
speaking signals, we consider that the source characteristics
(F0 contours) and short-time energy, cannot be included as
features for temporal alignment.

B. System characteristics

The vocal tract system in human voice production is con-
stituted by the glottis, oral and nasal cavities [26]. Particular
positions of larynx, acting as a resonator by itself and con-
tributing to the formant structure, are manifested as the most

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

1

(a)

0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

1

(b)

0 0.5 1 1.5 2 2.5 3
0

2

4

F
re

q
 (

k
H

z
)

(c)

0 0.5 1 1.5 2 2.5 3
0

2

4

F
re

q
 (

k
H

z
)

(d)

0 0.5 1 1.5 2 2.5 3
4.5

5

5.5

(e)

0 0.5 1 1.5 2 2.5 3

Time (s)

4.5

5

5.5

(f)

Fig. 1. Illustration of differences in characteristics between speech and singing
signals: (a) Speech signal, (b) Singing signal, (c) Speech spectrogram, (d)
Singing spectrogram, (e) log(F0) contour - speech and (f) log(F0) contour -
singing.

important characteristics of singing signal spectrum. When a
trained singer delivers loud singing, he/she does not rely on
the rise in subglottal pressure alone, as it is impossible for
any human being to produce extremely high pressure beneath
vocal folds. Instead, the singer raises the larynx making the
high frequency formants (F3,F4 and F5) to form a tight cluster,
delivering a noticeable peak around 3 kHz, termed as the
‘singing formant’ [1], [5]. The presence of singing formant
forces the decay of spectral slope of singing signals to be much
slower than that in speech signals. This enables the singer
to produce loud singing, enough to be heard in between the
musical accompaniment [5].

The singing formant and associated slower spectral decay
can be observed from the spectrogram of singing signal shown
in Figure 1(d) (between 2.25 and 3 s), which are absent in
the corresponding speech spectrum given in Figure 1(c). In
addition to the singing formant, the spectrum of singing signals
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are characterized by tighter coupling between pitch harmonics
and formant tracks, as compared to speech signals.

Yet, the spectra of speech and singing signals are in
common in many ways, which can be utilized for temporal
alignment. As the configurations of articulators do not change
significantly upon production of same phonemes in different
voice styles, the low frequency formants (F1 and F2) closely
match with each other in speech and singing spectra. From
Figure 1(c) and (d), it can be observed that the formant tracks
of F1 and F2 in speech and singing spectrograms closely
follow each other, despite the elongation of duration of these
tracks in singing signal. Thus, we propose to use the low
frequency region in speech and singing spectra, which are
consistent and not affected by the singing formant. Based on
the findings from analysis of source and system characteristics
between speech and singing signals, we propose

1) normalizing the short-time energy across segments of
speech and singing to nullify intensity variations

2) performing source-filter decomposition to obtain
smoothed spectral envelope, thus removing the source
characteristics

3) restricting the smoothed spectrum to low frequency
region to avoid the singing formant

Feature extraction will be performed from the low frequency
constrained smoothed spectrum of speech and singing signals.

III. FEATURES FOR TEMPORAL ALIGNMENT

We attempt feature extraction from speech and singing
signals, that describe only the consistent set of characteristics
between them. A sequence of feature extraction steps is
followed to realize the consistency of characteristics between
the signals at-hand, as per the study reported in Section II.
We concatenate different features from these steps to form a
unique feature vector, that we call the ‘tandem feature’.

A. VAD and energy normalization

As the linguistic content in singing signals and their spoken
lyrics to be temporally aligned are the same, the number
of voiced and unvoiced segments are also the same. Hence
we use voiced activity decisions (VAD) as part of the pro-
posed tandem features. We perform zero-frequency filtering
of speech/singing signals generating zero-frequency signals,
whose positive zero crossings indicate epochs in voice produc-
tion. The periodicity and energy of epochs are used to deduce
robust VAD information [27]. Also, the short-time energy of
segments of speech and singing signals are normalized to unity
in order to avoid mismatches due to intensity variations.

B. Low-time cepstrum

The most commonly used features in speech signal process-
ing are mel frequency cepstral coefficients (MFCC). Typically
the MFCC features consist of cepstral, delta and acceleration
coefficients and, were used for temporal alignment between
speech and singing [22], [24]. The delta and acceleration
coefficients represent the dynamic characteristics of audio
signals, and are very different between speech and singing.

Hence we do not use them here. The lower order cepstral
coefficients represent the smoothed spectral envelope of vocal
audio. Thus, we perform a 24th order cepstral analysis of
speech and singing signals and choose the 12 lower order
coefficients representing vocal tract characteristics, that we
call the low-time cepstrum (LTC), to be part of the tandem
features. We note that the high-time cepstrum reflects the
source characteristics, which are therefore isolated out to avoid
inconsistency between speech and singing.

To reduce the spectral mismatch between speech and singing
signals due to the singing formant, as discussed in Sec-
tion II-B, we propose to restrict the spectral range to low
frequency region, thereby excluding the singing formant.

C. LP and STRAIGHT analyses

The source-filter decomposition from speech and singing
signals is performed using (i) linear prediction (LP) analysis
and (ii) STRAIGHT analysis. The LP analysis models vocal
tract system as an all-pole model and captures the source
characteristics in the LP residual [28]. The STRAIGHT anal-
ysis performs pitch adaptive windowing and smoothing of
speech/singing signals to obtain smoothed spectral envelope
and source characteristics [29].

Thus in our study, the smoothed spectral envelope of
speech/singing signals are obtained by a parametric mod-
eling and a nonparametric modeling approaches, namely
LP and STRAIGHT analyses. The spectrograms obtained
from smoothed short-time spectra of singing signal, using
STRAIGHT and LP analyses, are shown in Figure 2(b) and
(c), respectively. It can be seen that the first two formant
tracks in these spectrograms are almost identical to the original
tracks in singing spectrogram, given in Figure 2(a). Similar
figure can be observed in case of speech signals also. The
STRAIGHT spectrogram and LP spectrogram thus obtained
are restricted between 0 and 3 kHz, in order to avoid the effects
of singing formant. A 16th order cepstral analysis is carried
out to produce STRAIGHT and LP cepstral coefficients (STR
and LPC) from the respective constrained spectra.

We formulate the set of tandem features constituting of
sequential feature extraction schemes including VAD, LTC
and STR & LPC steps, which represent the consistent char-
acteristics across speech/singing signals while neglecting the
inconsistent characteristics. These tandem features are utilized
for temporal alignment between speech and singing using
DTW algorithm.

An example of the temporal alignment thus obtained be-
tween segments of speech and singing signals is shown in
Figure 3. The vertical red lines in Figure 3(a) and (b) rep-
resent ground truth for word boundaries, obtained by manual
labeling. The vertical black lines in Figure 3(a) represent the
word boundaries in singing signal which are aligned with
those in speech signal, estimated by DTW algorithm using
the tandem features. The timing difference between the red
and black vertical lines in Figure 3(a) represent the word-
boundary alignment error produced by the proposed features.
From visual inspection of Figure 3, it can be observed that the
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Fig. 2. Smoothed spectrograms obtained from STRAIGHT and LP analyses
(a) Singing spectrogram, (b) STRAIGHT spectrogram and (c) LP spectrogram.
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Fig. 3. Word boundary alignment obtained using the proposed tandem features.
(a) Singing signal and (b) speech signal for the sentence: ‘Now I don’t want
to lose you’. The vertical red lines and vertical black lines show the original
and estimated word boundaries, respectively. Diagonally oriented lines show
the boundary alignments between speech and singing.

error committed by the proposed features in aligning speech
and singing signals is minimal.

IV. EXPERIMENTAL EVALUATION

To demonstrate the superiority of tandem features, we
perform quantitative evaluation of temporal alignment between
speech and singing signals from two different individuals (user
and singer) using DTW algorithm. A database of parallel
recordings of source speech and target singing, consisting of
24 popular English songs sung by 3 male and 3 female singers
(6 singers × 4 songs) and read by 3 male and 3 female users, is
chosen for the evaluation [30]. All the signals are recorded at
a sampling rate of 16 kHz. This database includes 728 lyrical
sentences having average spoken duration of 4 s and, has
a total of 4,236 words in both speech and singing. Manual
labeling of word boundaries of all recordings is performed
to build the ground truth for evaluation. The mean value of

timing error between the ground truth and estimated word-
boundaries using DTW, evaluated over the entire database, is
computed as the performance measure for temporal alignment.
This measure is termed as the average word-boundary error
(AWBE).

The AWBE in DTW-based temporal alignment using differ-
ent features are reported in Table I. The MFCC features are
widely used in speech signal processing and, were utilized for
temporal alignment in STS conversion [22]–[24]. Apart from
manual labeling, we identify two baseline temporal alignment
techniques used in STS systems based on MFCC features as
(i) Direct alignment (MFCC+∆ + ∆∆ 1) [23] and (ii) Dual
alignment- source speech aligned with singer’s speech, which
is later aligned with target singing (MFCC+∆ + ∆∆ 2) [22].
As discussed earlier, the MFCC features include delta and
acceleration coefficients that represent the dynamic character-
istics of audio signals. As speech and singing are very different
in terms of dynamic characteristics, inclusion of delta and
acceleration coefficients in features adversely affects the DTW
alignment. Upon removal of these coefficients from MFCC
features, the AWBE is reduced to an extent, as shown in
Table I.

TABLE I
OBJECTIVE AND SUBJECTIVE EVALUATION OF TEMPORAL ALIGNMENT

USING DIFFERENT FEATURES.

Features AWBE (s) MOS BWS
MFCC+∆ + ∆∆ 1 [23] 0.268 1.64 -0.21
MFCC+∆ + ∆∆ 2 [22] 0.636 1.22 -0.75
MFCC 0.224 2.12 -0.18
LTC 0.148 3.16 0.08
Tandem features 0.122 3.72 0.88

We investigated the efficiency of LTC over MFCC in
temporal alignment. It was observed that the LTC deliv-
ered a relative improvement of 33.93% in AWBE over
MFCC, that confirms its efficacy in representing vocal tract
characteristics and nullifying source characteristics of sig-
nals. The cumulative improvement in temporal alignment
by the incorporation of consistent characteristics among
singing and speaking styles (by sequential addition of fea-
tures upon LTC to form the 45-dimensional tandem features
(1VAD+12LTC+16STR+16LPC)) can be observed from Ta-
ble I. The relative improvement in AWBE over 4,236 words
in the database, provided by the tandem features over MFCC
is a noticeable 45.54%. Also, the proposed tandem features
outperform both baseline techniques, by delivering relative
improvements of 54.48% and 80.82% over MFCC+∆+∆∆ 1
and MFCC+∆ + ∆∆ 2, respectively. This clearly demon-
strates the superiority of the tandem features in overcoming
the differences between speech and singing signals, thereby
providing accurate temporal alignment.

In order to study the effects of accuracy of temporal
alignment upon perception of synthesized singing from STS
conversion, we implement a baseline STS system and conduct
subjective tests. The voice conversion module in STS systems
formed by STRAIGHT analysis-modification-synthesis [22],
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[24] is fixed for different alignment modules, and hence,
the difference in subjective scores can be attributed to the
alignment module alone. 18 neutral listeners have participated
in the subjective test, who listened to 5 sets of synthesized
singing from STS conversion systems. Each set consists of 5
singing samples obtained using 5 temporal alignment modules
with different features. The listeners were asked to give their
opinion scores on a scale of 1 to 5, where 1 represents unac-
ceptable, 2-poor, 3-fair, 4-good and 5 denotes excellent. The
mean opinion scores (MOS) across all listeners over all sets of
samples are reported in Table I. The proposed tandem features
had produced perceptually superior synthesized singing to the
baseline systems using MFCC features, as indicated in Table I.

In order to remove ambiguities in scoring of perceptually
similar samples, the listeners were asked to choose the best and
worst sounding singing samples from each set, after listening
to them multiple times in different orders. We perform best-
worst scoring (BWS) of samples as [31], [32]: BWSi =
(Bi−Wi)

Ni
where, Bi and Wi denote the number of times the

item i is chosen as ‘best’ and ‘worst’, respectively by listeners.
Ni represents the total number of appearances of item i in the
set of trials [31]. A more positive BWS score points to a more
perceptually appealing singing sample, and vice versa. And,
the proposed tandem features had delivered the most pleasing
singing samples to the listeners participated in this study, as
is evident from Table I.

It is understood that temporal alignment has a direct impact
on the quality of STS outputs. The proposed tandem features
extracted from the consistent set of characteristics across
speech and singing signals have proven to be beneficial in
temporal alignment. Notice that these tandem features are
formulated based on the observations from analysis on speech
and singing signals and, they are not a simple concatenation
of randomly chosen features. Also, use of these features
had rendered accurate temporal alignment between two very
different signals by means of signal analysis and processing
steps, rather than complex statistical modeling tools.

V. CONCLUSIONS

In this paper, we presented a detailed study of source
and spectral characteristics of speech and singing signals
to identify a set of features, which are consistent across
speech-singing voice styles to perform temporal alignment
between them. We have identified the differences between
speech and singing signals, that include variations in energy
and F0 contour regulated by the target melody in singing.
Also, the existence of singing formant in the high frequency
singing spectra presents a major distinction between speech
and singing. Motivated by the findings, we propose tandem
features that describe the common traits between speech and
singing signals. We have shown that the proposed features are
effective in neglecting the vivid differences between speech
and singing voice styles and hence, provide accurate temporal
alignment between them as compared to other traditional
features. The objective and subjective experiments reported
in this paper reveal the superiority of the proposed tandem

features over the MFCC features in aiding the quality of
temporal alignment. As the accuracy of alignment is crucial
for STS synthesis, the proposed features abet in generating
good quality synthesized singing from STS.
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