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Abstract—Zero resource speech recognition is getting attention
for engineering as well as scientific purposes. Based on the
existing unsupervised learning frameworks using only speech
input, however, it is impossible to associate automatically found
linguistic units with spellings and concepts. In this paper, we
propose an approach that uses a scalar reward that is assumed
to be given for each decoding result of an utterance. While the
approach is straightforward using reinforcement learning, the
difficulty is to obtain a convergence without the help of supervised
learning. Focusing on encoder-decoder based speech recognition,
we explore several neural network architectures, optimization
methods, and reward definitions, seeking a suitable configuration
for policy gradient reinforcement learning. Experiments were
performed using connected digit utterances from the TIDIGITS
corpus as training and evaluation sets. While it is challenging,
we show that learning a connected digit recognition system is
possible achieving 13.6% of digit error rate. The success largely
depends on the configurations and we reveal the appropriate
condition that is largely different from supervised training.

I. INTRODUCTION

Automatic speech recognition systems have reached human
performance for several tasks [1], [2]. However, the per-
formance largely depends on supervised learning, and there
is a significant gap between human and speech recognition
systems regarding the learning ability. The vulnerability in the
learning results in substantial development cost that limits the
application of speech recognition technologies to only a few
major languages leaving most of the others in the world. To
address the problem, and to answer the fundamental scientific
question how a system can autonomously acquire language,
speech recognition research in zero resource scenario is getting
attention [3] where zero resource refers to no orthographic
transcript. However, existing unsupervised subword modeling
and spoken term discovery methods can not learn spelling and
meaning of an utterance from interactions with humans. To re-
alize such ability, reinforcement learning of speech recognition
system would be needed, which is the focus of this paper.

Reinforcement learning is popular in spoken dialogue sys-
tems to improve dialogue control [4], [5], [6]. On the other
hand, studies to apply it to learn speech models were lim-
ited [7] until recently. For an end-to-end speech recogni-
tion system based on connectionist temporal classification
(CTC) [8], Graves firstly used expected transcription loss [9]
which is equivalent to the REINFORCE policy gradient
method [10] using the word error rate as the negative re-

ward [11]. Since then, policy gradient methods have been used
in CTC [12], [13] and encoder-decoder [14] based speech
recognition systems to reduce word error rate by directly
minimizing it rather than using surrogate objectives such as
cross-entropy. Another application is a model adaptation based
on user feedback available in cloud services [15]. In all of
these systems, the policy gradient method is used to fine-tune
systems that are initialized by supervised learning.

To the best of our knowledge, there has been no research
that successfully applied reinforcement learning to speech
recognition system in reward only training scenario without the
supervised initialization. This is partly because of its difficulty.
When the speech recognition system is randomly initialized,
the recognition result is just random at the beginning of the
learning both in the length of the hypothesis and its contents.
Since the reward is given based on the system output, the
learning becomes very difficult if most of the recognition
results are completely wrong as mentioned in [9].

In this paper, we explore several neural network architec-
tures, optimization methods, and reward definitions, seeking
a suitable configuration for the policy gradient reinforcement
learning focusing on encoder-decoder based speech recogni-
tion systems. The assumptions are that a system gets scalar
feedback for its output per utterance and no other information
is given. Specifically, we compare Likelihood Ratio Method
(LRM) [16], [17] and Proximal Policy Optimization (PPO)
algorithm [18] as the variants of the policy gradient methods
and combine them with several definitions of rewards based on
word error rate. As the network architectures, we investigate
LSTM based basic encoder-decoder networks [19], [20] and
their extensions. While the learning is challenging, we show
that it is possible to train a connected digit recognition system
based on an encoder-decoder network from scratch using only
scalar reward by optimizing the network structure and the
learning configuration.

II. POLICY GRADIENT METHODS

Policy gradient methods are types of reinforcement learning
algorithms. As the general setup, a system has a set of actions
and a policy function f that takes a state or observation s
and returns a probability distribution πθ (a|s) of an action
a to take. The policy function is parameterized by a set
of parameters θ. From πθ (a|s), an action is sampled and
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executed. In our case, s is an acoustic feature sequence, and
the action is a recognition hypothesis. According to the action,
the system gets a scalar reward rs (a).

A. Likelihood ratio method (LRM)

The goal of the learning is to maximize the expected reward
E [rs (a)] =

∑
a πθ (a|s) rs (a) with respect to θ. The max-

imization can be performed by applying the gradient ascent
method. However, there may not exist an analytic functional
form of the reward, and enumerating all possible actions may
not be tractable. Therefore, LRM uses log derivative trick or
likelihood ratio ∇θ log πθ (a|s) = ∇θπθ(a|s)

πθ(a|s) as in the natural
evolution strategy [21], [22].

∇θE [rs (a)|θ] = ∇θ
∑
a

πθ (a|s) rs (a)

=
∑
a

πθ (a|s)
(
∇θπθ (a|s)
πθ (a|s)

)
rs (a)

= E [rs (a)∇θ log πθ (a|s)] . (1)

Equation (1) means that rs (a)∇θ log πθ (a|s) is an unbiased
estimator of the gradient ∇θE [rs (a)|θ] that can be evaluated
by sampling action a from πθ (a|s) and obtaining its reward.
Given the estimate of the gradient, the parameter update
formula is obtained as follows.

θ̂ = θ + εrs (a)∇θ log πθ (a|s) , (2)

where ε (> 0) is the learning rate. This algorithm is called
REINFORCE if the policy function is a neural network. When
a toolbox is used that supports automatic differentiation to
implement the neural network, the parameter update can be
conducted by using Equation (3) as the error function of the
network negating the sign of the objective.

−rs (a) log πθ (a|s) . (3)

If the reward is constant, Equation (3) becomes equivalent to
the cross-entropy error.

B. Proximal policy optimization (PPO)

Several extensions of LRM have been proposed. Among
them, Trust Region Policy Optimization (TRPO) has demon-
strated good performance in benchmarking [23]. PPO is an
efficient extension of TRPO that is simple to implement.
Compared to LRM, it minimizes Equation (4) instead of
Equation (3), where πθold is the policy function with old
parameters, δ is a non-negative value to specify a clipping
threshold, and clip is a clipping function that clips the value
in the first argument between the range specified by the second
and the third arguments.

max

{
− πθ(a|s)
πθold(a|s)

rs,

−clip
(

πθ(a|s)
πθold(a|s)

, 1− δ, 1 + δ

)
rs

}
. (4)

y1	 y2	 y3	 yL	Decoder	

x1	 x2	 x3	 xT	

Encoder	

hfT	
hbT	

tanh	

Fig. 1. Linear model. The input x1, x2, · · · , xT is an acoustic feature
sequence with variable length T , and the output y1, y2, · · · , yL is a digit
sequence with variable length L.
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Fig. 2. Attention model.
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Fig. 3. Spoke(out) model.
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Fig. 4. Spoke(in,out) model.

III. ENCODER-DECODER MODELS

For the connected digit recognition, we investigate four
encoder-decoder models with different architectures in the
reward only training scenario. The first model is a simple
network having 5-layer BiLSTM with 128 forward and 128
backward units as the encoder network and 1-layer 256 units
LSTM as the decoder network as shown in Figure 1. The two
outputs of the encoder network of the opposite directions are
concatenated and 256-dimensional utterance vector is made
through a tanh layer. The structure is similar to the Sutskever’s
machine translation model [19]. We refer to this model as
“linear” in the followings. The second model integrates an
attention mechanism [24] to the first model as shown in
Figure 2, which we refer to as “attention”. The third model

1935

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



is similar to the Cho’s encoder-decoder machine translation
model [20] having radiating spokes from a tanh layer located
on top of the utterance vector to each frame of the decoder
network. The encoder and the decoder are the same as the
first model, and the hub-like additional tanh layer has 512
units. We refer to this model as “spoke(out)”. The last model
is similar to the third model but we extend it by adding spokes
from the encoder network to the tanh layer. We refer to this
model as “spoke(in,out)”.

In all the networks, the output layer of the decoder network
is a softmax having 12 units representing digits (0 to 9 and
“o”) and an end-of-string <EOS> symbol. We do not make a
link to connect (l − 1)-th output to l-th input in the decoder
network since the task is digit recognition and no correlation
is assumed between the adjacent digits. In fact, there was no
big difference in the performance when we introduced the link
in our preliminary experiments.

IV. REWARDS

For speech recognition, accuracy is the most basic evalua-
tion measure. As an initial work on the reward only training,
it would be the first choice as a measure to simulate human
feedback focusing on how to use the given reward.

In our preliminary experiments, we have found that there is
a problem when we directly used it as the reward for a digit
sequence drawn from the posterior distribution by the decoder
network. That is, because the decoder output is random at the
beginning and the accuracy is very low, the systems tend to
stick to 1-length output just to prevent insertion errors. Based
on this observation, we define and investigate the following
rewards.

A. Clipped accuracy (ClpAcc)

As mentioned, accuracy (Acc) would be the first choice for
the reward. It is defined for each utternace by Equation (5),
where Nref it the number of digits in a reference, E is the
number of recognition errors, and Err is the error rate. The
number of errors E is a sum of the numbers of insertion (I),
deletion (D), and substitution (D) errors. To use Acc as a
reward, we define ClpAcc as shown in Equation (6) clipping
negative value to 0 since otherwise the learning has diverged
in our preliminary experiments.

Acc =
Nref − E
Nref

= 1− Err, (5)

ClpAcc = max {Acc, 0} . (6)

B. Symmetric accuracy (SymAcc)

To prevent the recognition system from sticking to the 1-
length output, we define SymAcc as shown in Equation (7),
where Nhyp = Nref+I−D is the length of the hypothesis. As
shown in Equation (8), SymAcc discounts the accuracy when
the length of the hypothesis is shorter than the reference, which

TABLE I
DISTRIBUTION OF UTTERANCE LENGTH IN THE TRAINING SET.

# digits 1 2 3 4 5 6 7
frequency 2464 1232 1232 1332 1132 0 1231

motivates the system to try longer hypothesis.

SymAcc = max

{
Nref − E
2Nref

+
Nhyp − E
2Nhyp

, 0

}
(7)

= max

{
1− 1−Acc

2

(
1 +

Nref
Nhyp

)
, 0

}
. (8)

C. Length error penalized accuracy (LPAcc)

Another strategy to prevent the system to persist on the 1-
length output is to explicitly penalize the difference between
the reference and the hypothesis lengths. We define LPAcc
as shown in Equation 9, where α is a penalty coefficient. In
the experiment, α was chosen to 0.3 based on a preliminary
experiment.

LPAcc = max {Acc− α |Nref −Nhyp| , 0} . (9)

D. SymAcc with reward mean clipping (SymAcc+RMC)

It is known that sometimes it is useful to consider relatively
whether the reward is better or worse compared to the current
expectation to reduce estimation variance, and reinforcement
baseline (also referred to as reward baseline) is used [25], [26].
Here, we evaluate a strategy to clip the reward by its mean
in the preceding samples as shown in Equation (10). In the
following experiment, we combined it with SymAcc.

SymAccRMC =

{
SymAcc (SymAcc ≥ m)

0 (otherwise)
, (10)

where m is the mean of the original accuracy Acc in the
previous 8.5k samples. At the beginning of the learning, we
set m = 0 as an initial condition. The meaning is that we only
use samples that outperform the standard level at that timing.

V. EXPERIMENTAL SETUP

Experiments were performed using adult English speech
data of connected digits from the TIDIGITS corpus 1. The
training data included 4.2 hours of spoken utterances from 55
male and 57 female speakers, which consisted of 8623 samples
of utterances of 1 to 7 digits. The test data included 4.3 hours
of utterances from 56 male and 57 female speakers. Table I
shows the distribution of the utterance length in the training
set. Acoustic features were 13-dimensional MFCC extracted
using Kaldi toolkit with the default settings specifying the
sampling rate to 20kHz. In the reinforcement learning, we
draw training samples from the training set with replacement.
The information that was given to the system was only the
reward that was evaluated for the recognition hypothesis.
The hypothesis was obtained by sampling from the estimated
posterior distribution by the system for a given input. For the
implementation, Tensorflow [27] was used. The mini-batch
size was set to 64.

1https://catalog.ldc.upenn.edu/ldc93s10
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TABLE II
DIGIT ERROR RATE (DER) OF THE ENCODER-DECODER MODELS WHEN

THEY WERE TRAINING BY SUPERVISED LEARNING.

linear attention spoke(out) spoke(in,out)
DER 21.5% 1.3% 16.1% 6.7%
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Fig. 5. Test set digit error rate (DER) by the encoder-decoder models when
they were trained by reinforcement learning from scratch based on the
SymAcc reward. The horizontal axis is the number of processed training
samples.

As a baseline to compare, we evaluated a strategy of per-
forming supervised learning gathering samples whose labels
were correctly identified just by chance by a random guess.
The success rate of guessing the correct label varies according
to how to randomly guess the label. If we consider obtaining
a distribution qi by which the chance of guessing a correct
label

∑N
i=1 piqi is maximized assuming a prior distribution of

the labels pi is known, where i is an index of a distinct label,
it is a problem of linear programming. The answer is to set
qk = 1 where k = argmax

i
pi and qj = 0 for all j 6= k. In this

case, the training is performed using only the samples with the
most frequent labels, which is apparently not desirable. Here,
we chose qi = pi as the baseline strategy, where the chance
of getting a correct label of a digit sequence was 0.77% for a
sample in the training set.

VI. RESULTS

Table II shows test set digit error rate (DER) of the
encoder-decoder models when they were trained by supervised
learning2. For the learning rate control, ADAM [28] was used.
The attention model gave lower DER than the linear model as
expected. The DER of the Spoke(in, out) model was higher
than the attention model but lower than the linear model.

Figure 5 shows the results of reward only training using the
SymAcc reward and the LRM learning algorithm comparing
different model architectures. Different from the supervised
learning, we used SGD since ADAM did not work at all.
The learning rate was set to 0.0005 based on a preliminary
experiment and it is kept constant. When the baseline learning
strategy was applied to the attention model, the system always
outputs the identical single digit at the beginning and the
learning hardly proceeded. After iterating more than 1.2 ∗ 107

2The definition of DER is the same as word error rate (WER) but we use
the term DER since the unit is a digit

101

301

501

701

901

1101

1301

1501

0.0E+00 4.0E+06 8.0E+06 1.2E+07 1.6E+07

D
ig

it
 e

rr
o

r 
ra

te

Number of samples

SymAcc-PPO baseline

ClpAcc-LRM LPAcc-LRM

SymAcc-LRM SymAccRMC-LRM

Fig. 6. Test set digit error rate (DER) by the spoke(in, out) model comparing
the combinations of the rewards and the optimization algorithms, and the
baseline.

times, it began to produce different digits and the DER reduced
a little, but they were still a single digit. This was probably
partly because the selected training samples were biased to 1
digit length utterances since the chance of guessing correct
label p2i was high (See Table I for their distribution), and
also partly because of the network structure. The attention
mechanism may have effect of making the network stick on
the wrong alignment. When the baseline strategy was used for
the spoke(in, out) model, the DER gradually reduced.

When the reinforcement learnings were performed using
the linear, attention and spoke(out) models, the learning did
not proceed, keeping DER mostly in the region over 100%.
However, spoke(in, out) model worked well. The DER mono-
tonically reduced, and DER of 26.0% was obtained. The
advantages of spoke(in, out) are that it does not consider
alignment as the attention mechanism and robust for the wrong
alignment, and yet can convey more information than the linear
model through the spoke connection from the encoder network
to the decoder network.

To verify the assumption about the problem of the attention
mechanism, we first applied a few epochs of supervised
learning and then performed the reinforcement learning as an
additional experiment. Since the attention becomes accurate,
the learning should progress. When starting from DER of
12.0%, we have confirmed that reduced WER of 10.8% was
obtained by the LRM training using adjusted learning rate of
10−7 as expected. The result is also consistent with that of
previous researches that applied reinforcement learning in the
supervised learning scenario for the fine tunings purpose.

Figure 6 compares DER by the spoke(in, out) model when
different reward types and the optimization algorithms are
combined. The DER based on the baseline learning is also
shown. It is seen that LRM gave better results than PPO in
this task. All the learning using LRM gave better results than
the baseline. LPAcc and SymAcc gave similar performance
that was better than ClpAcc when LRM was used. The best
result was obtained when SymAccRMC was used with LRM.
After processing 3.1∗107 samples by LRM with SymAccRMC
the DER become 13.6% demonstrating the possibility of the
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Fig. 7. Digit error rate (DER) when features developed for the Ze-
roSpeech2017 were used.

reward only learning of encoder-decoder recognition systems.
Finally, we performed the reward only training using fea-

tures developed for the ZeroSpeech2017 challenge [29]. They
were 40-dimensional bottleneck features where the feature
extraction neural network was trained using a spontaneous
Japanese speech corpus Corpus of Spontaneous Japanese [30].
For the cross-lingual evaluation based on ABX-test in the
challenge, it largely reduced the error rate, especially in across-
speaker condition. Figure 7 shows the results when the features
were used with spoke(in, out), LRM, and SymAcc. In the
figure, ”MFCC” is the MFCC features same as other exper-
iments, and ”BottleNeck” is the bottleneck features. While
the difference was small, the bottleneck feature gave better
performance than the MFCC features. When BottleNeck was
used, the DER was 14.41% after processing 6.5∗107 samples.

VII. CONCLUSIONS

We have proposed scalar reward only training approach
for zero resource speech recognition, and have investigated
several encoder-decoder neural network architectures, opti-
mization methods, and reward definitions, seeking a suitable
configuration for policy gradient reinforcement learning. We
have found that there is a tendency in the initial learning
process that the system persists on 1-length output as a strategy
to avoid insertion errors when it is initialized randomly. To
avoid the problem, we have proposed SymAcc and LPAcc
rewards. We have also found that the attention mechanism
prevents the progress of the learning when the learning starts
from scratch, and our proposed spoke(in, out) structure works
better in such situation avoiding the problem. The best result
was obtained when spoke(in, out) model was trained with
LRM and SymAccRMC, which introduced the reward mean
clipping to the SymAcc reward. The lowest DER was 13.6%.
Future work includes reducing the required number of training
samples by combining unsupervised learning, and extending
the task from digit recognition to language understanding
utilizing more general reward.
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