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Abstract - Block Truncation Coding (BTC) is an effective 

lossy image coding technique that enjoys both high efficiency 

and low complexity especially when halftoning techniques are 

employed to shape the noise spectrum of its output. However, 

due to its block-based nature, blocking artifacts are commonly 

found in the coding outputs. Post-processing schemes are 

generally applied to soften the problem. Recently, a 

halftoning-based BTC algorithm was proposed to solve this 

problem by eliminating the cause of blocking artifacts. In this 

paper, through an optimization step, the performance of the 

algorithm is optimized in terms of a given objective measure. 

The idea can be adopted to work with other halftoning 

methods to optimize other measures for suiting different needs 

in different circumstances. 

Key words: blocking effects, block truncation coding,  halftoning, 

optimization 

1. Introduction 

Block truncation coding (BTC) was first introduced by 

Delp and Mitchell in 1979 [1]. In principle, it divides an 

image into non-overlapped blocks and then characterizes each 

block by two boundary values and a binary pattern that 

specifies the distribution of the two boundary values in a 

block. It provides a low-complexity yet effective means to 

achieve lossy image compression.  

Since its introduction, various modifications to BTC have 

been proposed to improve its coding performance and various 

coding techniques such as vector quantization, entropy coding, 

predictive coding, discrete cosine transform, bit-plane coding 

and differential pulse code modulation [2-4] have been 

proposed to work with BTC to improve the rate-distortion 

performance. For the early stage of the evolution of BTC, one 

can refer to a detailed summary provided in [5]. 

Recent researches on BTC put their focus on how to 

enhance the visual quality of its outputs with halftoning 

techniques[6-10]. Halftoning is a powerful tool to quantize a 

multi-level image into a bi-level output image of desirable 

blue noise characteristics [11] and hence it can be used to 

produce the binary pattern required in BTC. With the help of 

the low-pass filtering effect of our human visual system(VHS), 

the high frequency blue noise can be effectively removed and 

the visual quality of the compressed image can be 

significantly improved.  

Similar to all conventional BTC algorithms, halftoning-

based BTC algorithms are block-based and hence blocking 

artifacts can generally be found in their outputs. Little effort 

has been devoted to address this issue and post-processing 

filtering seems to be the only remedial solution reported in 

literature [12,13] before the publication of [14]. Unlike the 

filtering approach that unavoidably distorts the visual quality 

of block boundary regions, the approach proposed in [14] 

(referred to as IDDBTC hereafter as it is an interpolation-

involved dot-diffusion-based BTC algorithm) proactively 

eliminates the introduction of blocking artifacts during the 

coding process and hence no filtering is required. This paper 

presents a new halftoning-based BTC algorithm that modifies 

IDDBTC to optimize the visual quality of its encoding outputs 

at no extra cost in terms of bitrate. 

The rest of this paper is organized as follows. Section 2 

briefly reviews IDDBTC[14]. Section 3 presents an 

optimization scheme which can be exploited to further 

improve the performance of IDDBTC. Simulation results are 

presented in Section 4 for evaluation study and a conclusion is 

given in Section 5.  

2. Review of IDDBTC   

Without loss of generality, we assume that the input 

gray-level image I is of size �×�, where � is a multiple of an 

integer s, and it is partitioned into non-overlapped blocks of 

size s×s each. Let ),( jiI  be the (i,j)
th
 pixel of the input image 

I, nmI ,  be the (m,n)
th

 block of I, and ),(, lkI nm  be the (k,l)
th

 

pixel of block nmI , . Then we have ),(, lkI nm =

),( lsnksmI ++ . 

The maximum and the minimum values of the pixels in 

block nmI ,  are, respectively, given as 

})0,|),(max({ ,
max

, ≥>= lkslkII nmnm   (1) 

and 

})0,|),(min({ ,
min

, ≥>= lkslkII nmnm   (2) 

where max(.) and min(.) are the maximum and the minimum 

operators, respectively.  
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In IDDBTC, an energy plane, which is denoted as X 

hereafter, is initialized as I and partitioned as in I. All the 

blocks are processed in parallel. For each block, pixels are 

processed sequentially according to a pre-defined order, which 

is specified by a s×s matrix called Class Matrix (CM), to 

produce the encoded image.   

Consider the case that we are now processing 

),(),(, lsnksmXlkX nm ++≡ , the thlsnksm ),( ++  element 

of X, to encode pixel ),( lsnksmI ++  for s>k,l≥0 and 

}/,0|),{(),( s�qpqpnm <≤≡Λ∈ . A thresholding process is 

first applied to produce a binary output for the pixel as follows. 



 <

=
else

lkTlkXif
lkB

nmnm
nm

1

),(),(0
),(

,,
,    (3)  

where ),(, lkT nm  is a threshold defined as  

��.���, �	  =  �
������ + �, �� + �	 + �
������ + �, �� + �	
2  

   for  (m,n)∈Λ and  s>k,l≥0.   (4) 

�
�����, �	  and �
�����, �	  are two non-stepwise bounding 

functions of (i,j). They are obtained by interpolating max
,nmI  and 

min
,nmI  for (m,n)∈Λ, respectively, with a two-dimensional 

bilinear interpolation.  

After ),(, lkB nm (i.e. ),( lnskmsB ++ ) is determined, the 

corresponding pixel value of the encoded image Y can be 

determined as 

���� + �, �� + �	 = 

��
������ + �, �� + �	, �� ��,���, �	 = 0
�
������ + �, �� + �	, ���� �   

(5)
 

The difference between ),( lsnksmY ++ and

),( lsnksmX ++  is considered as the coding error of the 

pixel and diffused to the neighbors of  ),( lsnksmX ++  as 

specified in eqn. (6) to update X before the next pixel is 

processed, where ),( jih is the (i,j)
th

 coefficient of a non-

causal diffusion filter and ),( yxK  is defined as 





=
else1

processedbeenhas)(pixelif0
),(

x,y
yxK    (7) 

Ω is the support of the diffusion filter. Coefficients h(i,j) for 

(i,j)∈Ω  are defined as elements in a matrix called Diffused 

Matrix (DM) whose center element corresponds to h(0,0).   

Pixels in a block are processed according to the order 

specified by the CM until all of them are processed. In 

IDDBTC, the DM and CM suggested in [15] are used. At the 

end of encoding, B(i,j) and Y(i,j) for all pixel (i,j) form, 

respectively, a binary bitmap and the encoded version of I. 

Though the encoded version of I is Y, the binary bit map 

B is stored instead of Y with the maximum and minimum 

values of the blocks as Y can be constructed with B, max
,nmI  

and min
,nmI  as shown in eqn. (5). 

3. HPSNR optimization  

The human-visual peak signal-to-noise ratio (HPSNR) is 

an image quality assessment metric based on HVS [16]. When 

the pixel depth of the original image is 8 bit and the image 

size is �×�, HPSNR is defined as    











=

HMSE

255
log10HPSNR

2

10   (8) 

where       
2

2
)(

1
HMSE IYG

�
−⊗=   (9) 

In eqn. (9), I and Y denote the original image and its encoded 

version respectively, G is a Gaussian filter that approximates 

the low-pass filtering nature of the HVS and  ⊗ symbolizes 

the convolution operation. 

In IDDBTC, two continuous bounding functions 

�
�����, �	 and �
�����, �	 are derived by interpolating  
max

,nmI ’s 

and 
min

,nmI ’s respectively to eliminate the blocking artifacts. 

Specifically, parameters 
max

,nmI  and 
min

,nmI  for block nmI ,  are 

computed with eqns. (1) and (2) respectively. As a matter of 

fact, the �
�����, �	  and �
�����, �	 interpolated with the 
max

,nmI  

and 
min

,nmI  for (m,n)∈Λ may not be optimal for producing an 

output Y of maximum HPSNR. In this paper, we suggest a 

better approach to derive two parameters, say  
ub

nmI ,  and 
lb

nmI , , 

for each block such that, when 
ub

nmI ,  and 
lb

nmI ,  for (m,n)∈Λ 

are respectively interpolated with bilinear interpolation to 

produce the bounding functions �
�����, �	 and �
�����, �	, the 

encoding image is optimal in terms of HPSNR. 

HPSNR can be maximized by minimizing HMSE. In 

matrix formulation, the reconstructed Y obtained with our 

proposed algorithm is given as 

 ! = "#$%! + "&#'! (10) 

where  !  is a �
2
×1 column vector defined as the 

lexicographically-ordered image Y, "  is a �
2
×�

2 
diagonal 

matrix whose diagonal is the lexicographically-ordered binary 

 

        ( )
∑ ++++

++++⋅⋅++−++
+

++++=++++

Ω∈ )}0,0{(\),(

),(),(

),(),(),(),(

),(),(

qp

qlsnpksmKqph

jlsniksmKjihlsnksmYlsnksmX

jlsniksmXjlsniksmX

 

for )}0,0{(\),( Ω∈ji  under the condition that 1),( =++++ jlsniksmK        (6) 
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bitmap B, ( is the identity matrix of size �
2
×�

2
, "& = ( − ", $%! 

and '!  are both (�/s)
2
×1 matrices and they are, respectively, 

the lexicographically-ordered two-dimensional arrays formed 

by 
ub

nmI ,  and 
lb

nmI ,  for (m,n)∈Λ, and # is a �
2
×(�/s)

2
  matrix 

which is actually the matrix form of the two-dimensional 

bilinear interpolation operator that interpolates 
ub

nmI ,  and 

lb
nmI , respectively to produce the lexicographically-ordered 

�
�����, �	   and �
�����, �	. 

Unlike IDDBTC in which the formulation of the bilinear 

interpolation depends on the nature (even/odd) of the value of 

s, the proposed method adopts a slightly different formulation 

that guarantees   

�
���*�� + +,-
. , �� + +,-

. / = ��,�01       (11) 

and 

�
���*�� + +,-
. , �� + +,-

. / = ��,�21       (12) 

for all m and n  whatever the value of s is. In general, �̂�45
(sm-

1-k,sn-1-l), �̂�45
(sm-1-k,sn+l),  �̂�45

(sm+k, sn-1-l) and  

�̂�45
(sm+k,sn+l) for k,l∈{0,1,…,6�� − 1	/29} are computed 

as weighted sums of ��,�$: , ��,�−1$: , ��−1,�$:  and ��−1,�−1$: . Figure 1 

shows an example in which �̂�45���, ��� − 1	 + 3	  is 

interpolated with ��,�$: , ��,�−1$: , ��−1,�$:  and ��−1,�−1$:  when s=4. 

�̂������, ��� − 1	 + 3	 is computed with the same approach 

based on ��,��: , ��,�−1�: , ��−1,��:  and ��−1,�−1�:  instead. 

To look for the optimal 
ub

nmI ,  and 
lb

nmI ,  for (m,n)∈Λ, we 

define a HMSE-based cost function based on eqn. (9)  as 

 < = =>� ! − 5!	=? = =>�"#$%! + "&#'! − 5!	=?  (13) 

where H is a �
2
×�

2
 matrix that represents Gaussian filter G 

and 5!  is a �
2
×1 column vector defined as the 

lexicographically-ordered image I, and then derive the optimal $%!  and '!   that minimize J. In particular, by differentiating J 

with respect to $%! and '! respectively, the optimal $%! and '! can 

be obtained as  

$%! = �#@"@>@>"#	AB#@"@>@>�5! − "&#'!	 (14) 

'! = �#@"&@>@>"&#	AB#@"&@>@>�5! − "#$%!	 (15) 

where C@ and C-1
 denote the transpose and the inverse of a 

matrix C  respectively. If the inverse matrix of C  does not 

exist, then C-1
 is the pseudo inverse of  C. The optimized $%! 

and '!  are, respectively, the lexicographically-ordered two-

dimensional arrays formed by 
ub

nmI ,  and 
lb

nmI ,  for (m,n)∈Λ.  

Though eqns. (14) and (15) provide the formulations to 

compute the optimal 
ub

nmI ,  and 
lb

nmI ,  for block nmI , , in 

practice it is impossible to derive them directly with eqns. (14) 

and (15) as the size of the involved matrices are huge and it is 

difficult to derive their inverses accurately. A gradient descent 

method can be used instead to derive optimal 
ub

nmI ,  and 
lb

nmI ,  

for (m,n)∈Λ as follows. 

Step 1:  Initialize $%! and '! as $%!D and '!D which are respectively 

the lexicographically-ordered two-dimensional arrays 

formed by  
max

,nmI  and 
min

,nmI   for (m,n)∈Λ, and set 

index k=0. 

Step 2:  Carry out the following iterative procedures  

$%!EFB = $%!E − �G2
H<
H$%!I0%%!J0%%!K,L%!JL%!K

 

= $%!E − G#@"@>@>�"#$%!E + "&#'!E − 5!	 (16) 

'!EFB = '!E − �G2
H<
H'!I0%%!J0%%!K,L%!JL%!K

 

= '!E − G#@"&@>@>�"#$%!E + "&#'!E − 5!	 (17) 

until termination criterion 

∆<EFB = N �O|Q%%!RQ%%!KS-,T%%!RT%%!KS-  A  �O|Q%%!RQ%%!K,T%%!RT%%!K�O|Q%%!RQ%%!KS-,T%%!RT%%!KS-  A  �O|Q%%!RQ%%!U,T%%!RT%%!U
 N < W (18) 

or    �<|0%%!J0%%!KS-,L%!JL%!KS- ≥ �<|0%%!J0%%!K,L%!JL%!K (19) 

is satisfied. Increase index k by 1 after each iteration. 

Step 3:  Extract the optimal 
ub

nmI ,  and 
lb

nmI ,  for (m,n)∈Λ from 

the available $%!E and '!E obtained so far. 

While parameter α controls the termination criterion, 

parameter β is the step size which controls the rate of 

convergence. The smaller the value of β, the slower the 

convergence is but the more precise the optimal 
ub

nmI ,  and 

lb
nmI , can be obtained. 

 

Figure 1. An example showing how �
������, ��� − 1	 + 3	 

is bi-linearly interpolated with ��,�$: , ��,�−1$: , ��−1,�$:  and 

��−1,�−1$:  when s=4  

4. Performance analysis 

Simulations were carried out to evaluate the performance 

of the proposed algorithm. For comparison, the performance 

of BTC[1], EDBTC[6], ODBTC[7], DDBTC[8] and 

IDDBTC[14] was also evaluated. In the simulations, seven 

512×512 grey-level testing images including Peppers, 
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Mandrill, Boat, Barbara, Lena, Airplane and Goldhill were 

encoded with different evaluated algorithms respectively.  

Table 1 shows the performance of the evaluated 

algorithms in terms of various objective measures including 

HPSNR [16], Information Content Weighted PSNR (IW-

PSNR) [17], Visual Information Fidelity (VIF) [18], Multi-

Scale Structural Similarity Index (MS-SSIM) [19], 

Information Content Weight Structural Similarity Index (IW-

SSIM) [17], and Gradient Magnitude Similarity Deviation 

(GMSD) [20]. The figures in the table are the averages of the 

evaluation results of all testing images under specific 

conditions. In the simulations, the results of the proposed 

algorithm were obtained with α=0.01. Parameter β was 

selected to be 0.01 and 0.005 when the block size was 8×8 and 

16×16 respectively. One can see that, whatever the block size 

is, the proposed algorithm performs better than other 

halftoning-based BTC algorithms in terms of almost all these 

objective measures.  

Though BTC[1] can always perform better in terms of 

PSNR, IW-SSIM and MS-SSIM, the quality of its outputs is 

actually the lowest especially when the block size is large. The 

halftoning process in a halftoning-based BTC algorithm 

introduces high-frequency noise to its output, which lowers 

the PSNR remarkably. However, as HVS behaves as a low 

pass filter which is able to remove high frequency halftoning 

artifacts, conventional BTC is actually not preferable as 

compared with halftoning-based BTC algorithms. Figures 2 

and 3 show some simulation results for subjective comparison. 

One can see that the proposed algorithm can effectively 

remove the blocking artifacts and preserve the spatial features 

in both smooth and textured regions of the original image. As 

shown in Figure 3, even when the block size is only 8×8, 

blocking artifacts can be visible in the outputs of BTC, 

ODBTC, EDBTC and DDBTC but ours. One can easily 

observe this contrast in the regions around the windows and 

the field (the middle top) in Figures 3(b)-(f). 

The encoding complexity of the proposed dot diffusion-

based BTC algorithm is high as optimization is involved. 

However, the decoding process involves the interpolation of 

two planes (i.e. �
�����, �	 and �
�����, �	 for all i and j) and a 

selection process only. When block size s=2
r
, where r is an 

Table 1  Coding performance of halftoning-based BTC algorithms 

Block size Algorithm HPSNR IW-PSNR IW-SSIM MS-SSIM VIF GMSD PSNR 

8x8 

BTC [1] 39.9247 34.1837 0.9674 0.9777 0.4575 0.0517 28.1637 

ODBTC [7] 37.3828 29.7479 0.9149 0.9255 0.3712 0.0757 19.2997 

EDBTC [6] 40.5362 35.9514 0.9431 0.9394 0.4726 0.0729 20.1333 

DDBTC [8] 41.5265 34.3434 0.9424 0.9361 0.4747 0.0695 19.9211 

IDDBTC[14] 42.1071 35.6042 0.9429 0.9317 0.4872 0.0643 20.1964 

Ours 43.3236 41.6384 0.9456 0.9399 0.4999 0.0607 20.5164 

16x16 

BTC [1] 34.0370 27.0642 0.9238 0.9486 0.3302 0.1277 25.9355 

EDBTC [6] 38.3458 31.9609 0.9100 0.8901 0.3947 0.1153 16.7342 

DDBTC [8] 39.1629 33.6841 0.9030 0.8778 0.3814 0.1182 16.6073 

IDDBTC[14] 39.8976 34.5594 0.9041 0.8667 0.3952 0.1120 16.7824 

Ours 40.3908 36.3987 0.9072 0.8803 0.3965 0.1082 17.1052 

 

(a) Original (b) BTC 

(c) EDBTC (d) DDBTC 

(e) IDDBTC (f) Ours 

Figure 2.  Enlarged regions of the coding results of test image 

Peppers using various halftoning-based BTC algorithms. (a) 

Original, (b) BTC[1], (c) EDBTC[6], (d) DDBTC[8], (e) 

IDDBTC[14] and (f) Ours. Block size is 16×16. 
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integer, it takes at most six shift-additions and one binary 

selection to decode one pixel. Besides, parallel processing is 

easily achievable due to the block independent nature of the 

decoding algorithm. Its complexity is much lower than any 

existing image coding standards such as JPEG. When 

decoding complexity is a critical concern, BTC-based 

algorithms are obviously good options.  If image quality is our 

next concern, the proposed algorithm will be an appropriate 

pick.     

5. Conclusions 

This paper presents a dot diffusion-based BTC algorithm 

that can improve the visual quality of encoded images by 

effectively eliminating the blocking artifacts and shaping the 

noise spectrum of an encoded image. The improvement is 

mainly achieved through an interpolation of bounding 

functions and a HPSNR optimization scheme.  

As the interpolation and the optimization steps can be, 

respectively, considered as a pre-processing step and a post-

processing step of the core part of the algorithm, one can 

develop other halftoning-based BTC algorithms by changing 

the halftoning method exploited in the core of the algorithm 

with some necessary modifications. In other words, the 

approach of the proposed algorithm forms a framework for 

one to develop halftoning-based BTC algorithms with 

different halftoning techniques as their cores.  

Simulation results demonstrate that the BTC algorithms 

developed under this framework help to improve the visual 

quality of the encoded images for different block sizes.  

The HPSNR optimization presented in Section 3 is based 

on the binary bitmap (i.e. B) derived with IDDBTC[14]. In 

IDDBTC, B is obtained with the conventional error diffusion 

technique based on a fixed scanning path (defined by the 

Class Matrix) and a spatial feature-independent diffusion filter 

(defined by the Diffused Matrix). In view of the noise model 

proposed in [21], the noise characteristics of B and hence the 

noise characteristics of our optimized output of IDDBTC are 

not ideal.  To pursue an even better visual quality performance, 

a more advanced error diffusion technique such as [22] and 

[23] can be used to derive a better B for the optimization.  

The algorithm presented in this paper is actually a 

barebone version. Similar to the case when the conventional 

BTC [1] evolves, by introducing other common coding 

techniques such as block classification, vector quantization, 

quadtree decomposition, discrete cosine transform, multi-bit 

quantization, entropy coding and block size adaption to the 

presented algorithm, the rate distortion performance can be 

further improved significantly.    
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