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Abstract—Rate-distortion optimal 3D point cloud compression
is very challenging due to the irregular structure of 3D point
clouds. For a popular 3D point cloud codec that uses octrees for
geometry compression and JPEG for color compression, we first
find analytical models that describe the relationship between the
encoding parameters and the bitrate and distortion, respectively.
We then use our models to formulate the rate-distortion opti-
mization problem as a constrained convex optimization problem
and apply an interior point method to solve it. Experimental
results for six 3D point clouds show that our technique gives
similar results to exhaustive search at only about 1.57% of its
computational cost.

I. INTRODUCTION

With the increasing capability of 3D data acquisition de-
vices, 3D point clouds have recently emerged as an effective
way to represent objects. A 3D point cloud consists of a set
of 3D coordinates indicating the locations of points, along
with one or more attributes (e.g., normals or colors). 3D point
clouds are becoming more and more popular in emerging
applications such as augmented reality [1], 3D telepresence
[2] and mobile robots [3]. However, their widespread use is
hindered by several challenges. In particular, high-quality point
clouds may contain millions of points, making their process-
ing, storage and transmission challenging. For this reason,
efficient compression algorithms have to be developed for 3D
point clouds to accommodate existing network bandwidth and
storage capacity.

3D point clouds exhibit redundancy in both geometry and
attribute information. Initially, most of the works [4-7] focused
on the compression of geometry information. Among them,
the octree decomposition method [4] has been used exten-
sively because of its efficiency and low-complexity. For the
bounding cube of a 3D point cloud that is to be compressed,
an octree is constructed for a given maximum octree level
(corresponding to the depth of the octree and denoted by L
in the remainder of the paper). The bounding cube is then
partitioned into 2L × 2L × 2L voxels. The content of each
voxel can be determined by verifying whether there are points
inside the voxel. The maximum octree level determines the
precision of the geometry information, i.e, the number of

voxels to be encoded. Jiang et al. [5] proposed an octree-
based progressive 3D point cloud coder where the geometry
information is efficiently compressed by optimizing the order
in which the child cells are traversed. Ochotta and Saupe [6]
partition the point cloud in a number of point clusters. A
surface patch is associated to each cluster and parameterized
as a height field, which is efficiently encoded with a shape-
adaptive wavelet coder. Ahn et al. [7] proposed an adaptive
range image coding algorithm for the geometry compression
of large-scale 3D point clouds. In this method, a 3D point
cloud is first partitioned into blocks of various sizes. Then,
each block is encoded by selecting one prediction mode from
twelve candidates.

Compression of the attribute information has recently gained
more attention. Unlike a 2D image, a 3D point cloud has
an irregular data structure. Therefore, to compress the at-
tribute information (especially color), many works used special
transforms that are suitable for irregular data structures, e.g.,
shape-adaptive discrete cosine transform [8][9], graph trans-
form [10][11], Gaussian process transform [12][13], and Haar
wavelet-based region-adaptive hierarchical transform [14]. An-
other approach to compress the color attributes was proposed
by Hou et al. [15]. The main idea is to use a virtual adaptive
sampling process so that the task can be expressed as an l0-
norm regularized optimization problem. Instead of compress-
ing the irregular data directly, some methods [16][17][18] map
the irregular data to regular data for convenient compression.
Mekuria, Blom, and Cesar [16] applied a depth-first tree
traversal to read the color attributes from the octree and used
a zig-zag scan to map them to 8 x 8 blocks of a 2D grid.
Correlation between the color attributes was then exploited
by compressing the grid with JPEG. Similarly, Tu et al. [17]
converted the point cloud data into range images which were
then compressed using either JPEG or MPEG-4. In addition,
the rotation position vectors were compressed with run-length
coding. Cui, Xu and Jang [18] also grouped a point cloud into
blocks that were compressed by selecting the optimal coding
method from two predefined methods.

As the 3D point cloud format became widely used in prac-
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Fig. 1. Relationship between the bit rates, the maximum octree levels, and
the JPEG VALUEs for the Alex point cloud set.

tical applications, a fully functional testing platform known
as the point cloud library (PCL-PCC) [19] emerged and was
initially adopted by MPEG for verification experiments. For
the PCL-PCC platform, the color distortion depends on both
the maximum octree level which affects the number of coded
voxels and the quantization parameter (called JPEG VALUE)
which affects the coding errors of voxels. Different combina-
tions of the maximum octree level and JPEG VALUE give
different bitrates and reconstruction qualities.

In this paper, we focus on the PCL-PCC platform and
address the problem of how to determine the optimal cod-
ing parameters, i.e., the maximum octree level and the
JPEG VALUE, subject to a constraint on the target bitrate.
We use curve fitting to build analytical models for the rate
and distortion of the PCL-PCC 3D point cloud coder. We then
formulate the problem as a constrained optimization problem
and use an interior point method to solve it. Experimental
results show that our approach gives similar results to the
optimal ones obtained with exhaustive search at a fraction of
the computational cost.

The rest of the paper is organized as follows. Rate and
distortion models for PCL-PCC compression are proposed in
Section II. The optimal bit allocation (or coding parameter
determination) problem is formulated as a convex optimization
problem and solved by an interior point method in Section III.
Experimental results and conclusions are given in Section IV
and V, respectively.

II. RATE AND DISTORTION MODEL DERIVATION

In this section, we use statistical analysis to derive rate and
distortion models for the PCL-PCC platform. Compression
with this platform starts by carrying out an octree decompo-
sition. The predefined maximum octree level determines the
number of coded voxels and thus highly affects the bitrate
and reconstructed quality of a 3D point cloud. Then the color
values are mapped onto a 2D image and encoded by a JPEG
encoder in which the quantization parameters are represented
by the parameter “JPEG VALUE” (a large JPEG VALUE
corresponds to a small quantization error). For a given target

Fig. 2. Relationship between the logarithm of the bitrates, the maximum octree
levels, and the JPEG VALUEs for the Alex point cloud set.

bitrate, in order to determine the optimal coding parameters,
i.e., the maximum octree level and the JPEG VALUE, the rate
and distortion models must be determined.

As Fig.1 shows, the rate is nearly constant when the maxi-
mum octree level is either too big or too small. Therefore, we
only considered the range 5 to 9 for the octree level. Similarly,
since an unacceptable quality deterioration will occur with
small JPEG VALUEs, only those ranging from 50 to 100 were
considered.

A. Rate model derivation

Fig. 2 shows the relationship between the logarithm of the
bitrate (given by the average number of bits per point, bpp),
the maximum octree level, and the JPEG VALUE. We observe
that there is an approximately linear relationship between the
logarithm of the bitrate and the maximum octree level for a
fixed JPEG VALUE, that is,

lnR = a0L + b0, (1)

where L denotes the maximum octree level, R represents
the bitrate, and a0 and b0 are model parameters. Table I,
which was obtained by curve fitting, shows that the squared
correlation coefficient (SCC) of the linear relationship (1)
between lnR and L is greater than or equal to 0.98 and up
to 1 in some cases. Furthermore, the parameter b0 is almost
constant for a given 3D point cloud. On the other hand, the
parameter a0 depends on the JPEG VALUE (denoted by J).
Therefore, we further analyzed the relationship between a0 and
J . As Fig. 3 shows, there is an approximate linear relationship
between a0 and J :

a0 = a1J + b1, (2)

where the SCC is always greater than or equal to 0.93. Based
on (1) and (2), we can express the rate model as

lnR = aLJ + bL + c, (3)

where a = a1 , b = b1, and c = b0 are the model parameters.
For different 3D point clouds, the model parameters (a, b, and
c) and the SCC between the actual logarithm of the bitrate and
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TABLE I
RATE MODEL DATA

Fig. 3. Relationship between a0 and J .
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Fig. 4. Accuracy of the proposed rate model.

the fitted ones are provided in Table II. We see that the SCC of
all the tested 3D point cloud sets are larger than 0.96, which
indicates that the derived rate model is accurate. As the model
parameter a is almost constant in four point cloud sets, we fix
it to 0.0041, which corresponds to the average value for the
four point cloud sets. Fig. 4 shows the actual logarithm of the
bitrate and the fitted ones with respect to different maximum
octree levels and JPEG VALUEs from which we conclude that
the rate model is accurate enough.

TABLE II
PARAMETERS AND SCC OF FITTED RATE AND DISTORTION MODELS

B. Distortion model derivation

We measure the distortion between the original point cloud
vor and the reconstructed point cloud vre using the square of
color difference [20]

D (vor, vre) =
1
K

∑
vi∈vor

‖y (vi)− y (vnn re) ‖22, (4)

where vi is a point in the original cloud, vnn re is the nearest
neighboring point of the original point in the reconstructed
point cloud, y (vi) and y (vnn re) are the luminance values
of the original point and the reconstructed point respectively,
and K is the number of points in the original point cloud.
Fig. 5 shows the relationship between the coding distortion,
the maximum octree level, and the JPEG VALUE. We ob-
serve that there exists a power function relationship between
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Fig. 5. Relationship between the coding distortions, the maximum octree levels
and the JPEG VALUEs for the Alex point cloud set.

Fig. 6. Relationship between s0 and J .

coding distortions and the maximum octree levels for a fixed
JPEG VALUE, as given in (5):

D = s0L
q, (5)

where D is the distortion, and s0 and q are model parameters.
From Table III, the SCC of the estimated distortion and the
actual distortion is greater than or equal to 0.94. Besides,
we can also observe that s0 is related to the JPEG VALUE.
Accordingly, we analyzed the relationship between s0 and J
for each point cloud set. As Fig. 6 shows, there exists a power
relationship between s0 and J

s0 = sJp, (6)

where p is a model parameter. Therefore, we can write the
distortion model as

D = sJpLq, (7)

where the model parameters are obtained by data fitting. Table
II shows the model parameters (s, p, and q) and the SCC
between the actual coding distortion and the fitted ones for
various 3D point clouds. We can see that the SCC of all
the tested 3D point clouds sets are greater than or equal
to 0.96, which indicates that the derived distortion model is
accurate. The actual distortion and the fitted ones with respect

to different maximum octree levels and JPEG VALUEs are
shown in Fig. 7 from which we can conclude that the proposed
distortion model is accurate.

TABLE III
DISTORTION MODEL DATA

III. OPTIMAL CODING PARAMETER
DETERMINATION

The goal of 3D point cloud compression is to maximize
the reconstruction quality of the 3D point cloud subject to a
constraint on the bitrate. The reconstruction quality of a 3D
point cloud is determined by both the number of coded voxels
and the quantization errors. For the PCL-PCC platform, the
number of coded voxels depends on the maximum octree level
L, while the quantization errors depend on the JPEG VALUE
J . Therefore, the problem can be formulated as the constrained
optimization problem

min
L,J

D(L, J)

s.t. R(L, J) ≤ Rt,
(8)

where L ranges from 5 to 9, J ranges from 50 to 100,
and Rt is the target bitrate. Based on the derived rate model
and distortion model, the optimization problem (8) can be
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Fig. 7. Accuracy of the proposed distortion model.

reformulated as

min
L,J

sLqJp

s.t.





5 ≤ L ≤ 9
50 ≤ J ≤ 100

exp{aLJ + bL + c} ≤ Rt.

(9)

To solve (9), we need first to determine the model parameters.
As mentioned in Section II.A, we fix the value of a to 0.0041.
The other model parameters, i.e., b, c, s, p, and q, are obtained
by pre-encoding the given 3D point cloud with the four pairs of
coding parameters (L, J) ∈ {(5, 90), (7, 50), (7, 70), (8, 80)}.
Then, the parameters s, p and q are computed by solving the
equations:





ln(D(5, 90)) = ln(s) + q× ln(5) + p× ln(90)
ln(D(7, 50)) = ln(s) + q× ln(7) + p× ln(50)
ln(D(8, 80)) = ln(s) + q× ln(8) + p× ln(80).

(10)

Similarly, the parameters b and c can be obtained by solving
the equations:

{
ln(R(5, 90)) = 0.0041× 5× 90 + b× 5 + c
ln(R(7, 70)) = 0.0041× 7× 70 + b× 7 + c. (11)

Table IV shows the SCC between the actual logarithm of
the bitrate and the estimated ones that are calculated by the
estimated model parameters in terms of the proposed rate
model. In addition, the SCC between the actual logarithms of
the distortion and the estimated ones are also provided. We can
see that all SCCs are larger than 0.81, indicating accuracy of
the estimated model parameters. Based on the estimated model
parameters, the optimization problem is solved by an interior
point method [20] [21] in which the convex optimization
problem with inequality constraints is first converted to a
convex optimization problem with no constraints by a barrier
function and then solved with Newton’s method.

TABLE IV
SCC BETWEEN THE LOGARITHM OF THE ACTUAL RATE (RESP.

DISTORTION) AND THE ESTIMATED ONES CALCULATED FROM (3) AND (7)
USING (10) AND (11).

IV. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed
algorithm. Six 3D point clouds [22], namely, Alex, Andrew,
Dimitris, Longdress, Phil, and Soldier were used for the exper-
iments. The target bitrates Rt were 0.4 bpp, 1.4 bpp, 1.8 bpp,
and 3.4 bpp. Exhaustive search was used as the benchmark.
In exhaustive search, a 3D point cloud was first encoded by
all the possible combinations of maximum octree levels L and
JPEG VALUEs J . Then, the set S = {(L, J )|R(L, J) 6 Rt}
was determined. Finally, the combination (Ls opt, Js opt) that
gives the minimum distortion was selected from the set S. To
derive the rate and distortion models, point clouds are encoded
with maximum octree levels L and JPEG VALUEs J pairs
(5,90), (7,50), (7,70), and (8,80) by the PCL-PCC platform.
The distortion model parameters s, p and q are computed by
solving equations (10) and the rate model parameters b and c
are obtained by solving equations (11). Given a target bitrate,
we solve (9) to obtain the optimal maximum octree level L and
JPEG VALUE J . To evaluate the performance of the proposed
algorithm, we compared the rate-PSNR curve of the proposed
algorithm and the exhaustive search algorithm (Fig. 8). The
PSNR is computed by (12):

PSNR = 10× log10

(
2552

D

)
, (12)

where the distortion D is derived from (4). We can observe
that the performance of the model-based algorithm is very
close to that of exhaustive search. In the experiment, since
the maximum octree level ranged from 5 to 9, and the
JPEG VALUE ranged from 50 to 100, a 3D point cloud was
encoded 5 × 51 = 255 times to find the optimal L and J
with exhaustive search. In contrast, only four pre-encodings
were required by our method to compute the model parameters
and obtain the optimal L and J by the interior point method.
Thus, the time complexity of the proposed algorithm was only
about 1.57% of that of exhaustive search. Moreover, it should
be noted that the time complexity of the proposed method
mainly depends on the encoding procedure, not the interior
point method. Take Alex as an example, the time spent by
the interior point method is only 0.5% of that required by the
encoding procedure.

V. CONCLUSION

We proposed a model-based technique to efficiently deter-
mine the optimal coding parameters for PCL-PCC 3D point
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Fig. 8. PSNR vs. target bitrate for the proposed algorithm and exhaustive
search.

cloud compression. Rate and distortion models with respect
to the maximum octree level and JPEG VALUE were first
derived and verified by statistical analysis. Then, based on
the rate and distortion models, the bit allocation problem was
converted to a convex optimization problem that was solved
by an interior point method. Model parameters were derived
with a small number of pre-encodings. In order to evaluate
the performance of the proposed algorithm, we compared it to
exhaustive search. Experimental results showed that the rate-
distortion performance of the proposed method is very close
to that of exhaustive search, while its time complexity is about
63 times lower.
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