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Abstract—Specifying attentive regions in first-person vision
(FPV) plays an important role to find meaningful objects in our
daily life. Saliency detection is a major technique to locate such
attentive regions. However, even though the FPV captured from
the user perspective is always associated with his/her actions,
existing saliency detection methods are bottom-up, and they
cannot incorporate the information about the actions of the
user. Since people look at the target of their actions, saliency
detection algorithms for FPV should take into account which
objects are more likely to be manipulated by the user. In
this paper, we propose a supervised saliency detection method
that uses human gaze information when the user performs
actions as supervised signals. Our proposed method is based
on sparse coding (dictionary learning) with a supervised saliency
dictionary. Experiments using a real-world gaze dataset show that
our proposed approach outperforms a state-of-the-art saliency
detection algorithm based on sparse coding.

Index Terms—Gaze prediction, first-person vision (FPV), ego-
centric vision, saliency detection, sparse modeling.

I. INTRODUCTION

The ability to predict where people look at (i.e., gaze
positions) in a scene is useful to understand their daily living
and offers many applications in such as graphics design and
robotic vision [1], [2]. In first-person vision (FPV), human
gaze has a strong association with the user’s actions since the
gaze point tends to fall on the object that is going to be or
currently being manipulated by the user [3]. For example, if
the user is going to take a piece of bread, he/she must look at
the bread to know where to reach out. This is a prominent
feature of FPV that differentiate it from the third-person
vision. However, most existing saliency detection algorithms
are designed to be bottom-up without considering gaze/action
association, not for FPV captured in daily living [4]-[10].

Fig. 1 contrasts how saliency is different between bottom-
up and FPV (action-guided). The red circles denote the targets
of actions whereas the blue rectangles denote objects with
high bottom-up saliency. Fig. 1(a) is an FPV frame when the
user is about to take a piece of bread. Bottom-up saliency
tells that the orange plastic film is most distinct from other
regions, whereas the user’s action is to grab the bread, not
to pinch the orange film. Fig. 1(b) is about the action of
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Fig. 1. [Illustration of saliency results and target action.

taking a paper bowl and shows that a bottom-up saliency map
indicates the oatmeal box on the desk instead of the target
paper bowl since the color of the paper bowls is the same with
the background and not visually stand out. These observations
pose limitations on finding “salient” regions only from video
frames in FPV. Thus, traditional saliency detection methods,
which have been developed without FPV in mind, are not
suitable for detecting saliency in FPV, which shares the user’s
eyesight and is associated with the user’s actions.

For detecting saliency in images and videos, many saliency
models have been proposed. Li et al. [11] have proposed a vi-
sual saliency detection algorithm, dense and sparse reconstruc-
tion (DSR), from the perspective of reconstruction errors. The
image boundaries are first extracted via superpixels as likely
cues for background templates, from which dense and sparse
appearance models are constructed. Li et al. [12] have built a
dictionary-based framework that constructs saliency and non-
saliency dictionaries from stacked feature vectors and detects
saliency with a weighted sparse coding framework, which is
called the weighted sparse coding framework (WSCF). Their
article reports that WSCF performs favorably against then-
state-of-the-art methods in terms of precision and recall. Li
et al. [13] have extended sparse coding based method by
introducing [;-norm as sparsity constraint. Moreover, saliency
detection methods based on deep neural networks have been
proposed recently [14]-[16].

In this paper, we propose a saliency detection method for
predicting human gaze in FPV. We employ sparse coding
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(dictionary learning) and build a supervised dictionary that
incorporates human gaze during actions. Therefore, our pro-
posed method is not bottom-up and we call it supervised gaze
prediction based on sparse coding (SGP). We use the weighted
[y-norm as our sparsity measure to attain robustness. For
evaluation, we use an FPV and gaze dataset collected with eye
tracking glasses in real-world environments, where the subjects
perform many actions. Experimental results show that our
proposed method improves the gaze prediction performance
in the FPV compared to the existing state-of-the-art sparse
coding based saliency method.

II. FRAMEWORK AND FORMULATION

We use supervised saliency maps to predict the gaze point
of FPVs. We use a dataset consisting of gaze and video. The
GTEA Gaze dataset [17] contains both gaze and FPV video
for 17 people. The gaze and video data are labeled GOO1 and
V001, respectively, for person 001.

The framework of supervised saliency mapping is illustrated
in Fig. 2. When predicting saliency maps for person 001, we
use the gaze and video information from the other people
to learn the supervised saliency dictionary, which we denote
DO001. Then, the learned dictionary D001 is employed to
predict saliency maps for video V0O1.

As a basis of our formulation, we use sparse coding with a
weighted [;-norm [12], which consists of two separate stages
of saliency dictionary updates and gaze saliency mapping.

A. Features for Video

We divide a video frame into R superpixels and extract
a feature vector for each superpixel. We use coupled RGB
and Lab color spaces as color descriptors that can improve
the accuracy of saliency maps [18]. Two feature matrices
are generated for all superpixels: An averaged feature ma-
trix F, = RY*® and a color histogram feature matrix
F, = RY*E where R is the number of superpixels, C
is the averaged feature dimensionality, and C’ is the color
histogram feature dimensionality. By concatenating them, the
video feature matrix F = [F,,F}] is generated. Note that

Framework of supervised saliency mapping.

the rth column of F is a feature vector for superpixel r:
F=I[f,....f, ... fg].

The averaged feature F, performs well when the scene is
composed of objects with simple colors and textures but is
less robust when the foreground and background contain com-
plex textures. This is because averaging over all pixels loses
information that characterizes color variations within each
superpixel. The color histogram F}, is suitable for handling
scenarios where the scene contains highly textured objects.
Thus, these two features complement each other.

B. Sparse Modeling for Gaze Prediction

Our proposed sparse coding based gaze prediction frame-
work calculates saliency from the feature matrix by monitoring
the reconstruction errors from a saliency dictionary. We stand
on existing studies that show non-saliency regions can be
represented by a sparsely coded dictionary [11], [12]. We use
the error measure to refine the foreground superpixels and to
identify foreground saliency ones.

Saliency detection based on sparse coding [11] identifies
salient regions as those having high reconstruction errors with
a background templates dictionary. The dictionary D € RE*K
comprises K bases (or atoms) representing feature vectors for
background superpixels. The sparse reconstruction error for
superpixel r € {1,..., R} is defined to be

¢; = |If, - Dby}, (1)
where sparse coefficients h’ € R¥ are found by

h? = argmin|[£, — Dh|3 + Al @
h

Here, A > 0 is a regularization parameter, which determines
a tradeoff between the approximation error and the sparsity
constraint. Thanks to the sparsity induced from the /;-norm,
the sparse reconstruction errors are robust to complicated
background [11].

For saliency detection, we adopt a diagonal matrix W,
that contains weights for each atom for superpixel r [19] and
modify the sparse coding scheme to be

h* = argmin||f. — Dh,||2 + \|W,h,||. 3)
h

2001



Proceedings, APSIPA Annual Summit and Conference 2018

o
\'
N

o
\'
o

AUC score
(@)
>
(00]

o
o))
o

0.64 T —
0.02 0.04 0.06 0.08 0.10 0.12 0.14
(a) A

0.72

o
ﬂ

AUC score
o
>
(00]

o
o))
o))

1 2 4 6 8 10 20 30
(et

Fig. 3. AUC scores of SGP with varying (a) A and (b) ~.

The diagonal elements of W, compute the similarities be-
tween superpixel f,. to all the atoms in dictionary D:

W, = diag(exp(|[f, — dul3),.... exp(|If. — dx[3)). @)

The weight matrix for saliency detection is designed to be
inversely proportional to the similarity between the feature
vector f,. and the dictionary D. Namely, if the f,. is similar
to some template in D, the weight should be small and vice
versa.

C. Supervised Saliency Dictionary

To predict gaze in FPV videos captured from a user
performing actions, our approach uses a supervised saliency
dictionary D built from gaze positions and video frames of the
other users. The dictionary D is constructed by gaze frames,
starting from an initial dictionary and repeatedly refining
it [12]. The initial dictionary is generated from the other
videos (except the one needs to predict). To construct the initial
dictionary, the feature vectors of superpixels that contain the
other user’s gaze is used as an atom. In the refinement stage,
the dictionary is updated to be a set of the feature vectors
whose Sal values are higher than the mean value of Sal, there
Sal is defined in Section II-E.
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D. Object-Biased Gaussian Model for Center Prior

It is known that human gaze has the center bias—humans
look at peripheral areas less frequently than central areas. To
incorporate the center bias into our model, we use an object-
biased Gaussian model [11], [20], [21] to determine a center
prior. For each superpixel r with its coordinates (z,y), we

define our center prior to be
— )2 _ )2
Sal* (r) = exp [—((Ir Zoni)” | (o . Yobi) )] 5)
Iy

202
where o, and oy are 25% of the height and width of an image,
respectively, and z,b; and y,p; are the object center derived
from the pixel error as follows.

R R
Tobj = g WrZTr, Yobj = § WrYr, ©)
r=1 r=1

where w, are weights defined by normalizing the reconstruc-
tion errors € in (1) as
€r
wr = O
Dol €n

E. Supervised Saliency Prediction

We compute the saliency value Sal(r) for superpixel r as
follows [12].

Sal(r) = Sal™ (r) - Sal*(r), (8)

where Sal ™ (r) is the object-bias center prior defined in (5) and
Sal™(r) = exp(—~e:) depends on the reconstruction error in
(1). The parameter v determines a tradeoff between the object-
bias and the spare reconstruction error.

Our proposed algorithm, supervised gaze prediction based
on sparse coding (SGP), is shown in Algorithm 1. There are
two main stages of this algorithm: a) Supervised dictionary
learning stage, which uses the gaze information to learn a
supervised dictionary; and b) Gaze saliency mapping stage,
which obtains the saliency map of gaze points using the
learned dictionary.

III. EXPERIMENTS

We used the GTEA Gaze dataset [17]', which has recorded
FPV videos together with gaze points obtained from eye-
tracking glasses. The original motivation of collecting this
dataset is to understand the relationship between human ac-
tivities and gaze. There are 17 FPVs in the dataset, each
captures one person performing many actions. For example,
video 001 is a FPV of a user cooking sandwiches and contains
30 sessions, each of which is associated with an action such
as “take bread” or “take knife.”

We compared the results by our proposed algorithm, SGP,
with the state-of-the-art saliency detection method based on
sparse modeling [12]. We used the receiver operating char-
acteristic (ROC) curve and the area under curve (AUC) to
measure the consistency between predicted gaze maps and the
ground truth gaze points, which are widely used for evaluation
in the saliency detection literature [22].

! http://ai.stanford.edu/~alireza/ GTEA_Gaze_Website/GTEA_Gaze.html.
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Algorithm 1 Supervised gaze prediction based on sparse
coding (SGP)
Input: Video and gaze data from the target user V; and G
and from the other supervising users Vs and Gs.
1: # Supervised dictionary construction:
2: Compute the averaged feature matrix F, and the color
histogram feature matrix F}, for supervisor videos Vs.
3: Built an initial saliency dictionary D from the video
features and gaze positions Gs.
4: # Gaze saliency mapping:

% o1 o0z 03 o4 05 06 07 08 08 5: for each frame in video V; do
False positive rate 6:  Compute the averaged feature matrix F, and the color
(a) video 001 histogram feature matrix Fy,.
7. Calculate the object-biased Gaussian model based cen-
ter prior by (5).
7 8:  Update the saliency dictionary D by selecting feature
1 vectors whose saliency values were larger than the
. average: D < {f,. | Sal(r) > mean(Sal(r))}.
i 9:  Obtain the saliency values by (8).
i 10: end for
] TABLE I
7 AUC SCORE COMPARISON.
0 : : : : : : : ‘ No. WSCF SGP Dev.(%)
0 01 02 03 04 05 06 07 08 09
False positive rate 001 0.499 0.583 16.83
(b video 002 002 0.571 0565 —1.05
08 003 0.397 0.414 4.28
07 1 005 0.085 0.095 11.76
056 1 006 0.420 0.469 11.67
% 0s ] 007 0.630 0.653 3.65
% o | 008 0.325 0.402 23.69
%03 | 010 0.253 0.259 2.37
= 012 0.439 0.440 0.23
o 1 013 0.233  0.239 2.58
o1 | 014 0.691 0.667 —3.47
e e e s s o o 016 0569 058  2.99
False positive rate 017 0.572 0.583 1.92
(c) video 003 018 0.579 0.581 0.35
0.4 020 0.297 0.354 19.19
0351 021 0.603 0.683 13.27
sl 022 0.439 0.508 15.72

o

)

a
T

True positive rate
o
o o
o n
T T

A. Degree of Trade-off Parameters

We conducted an experiment to evaluate the effects of
changing the sparsity parameter A\ and the trade-off parameter
7 using session 1 in video 001. Fig. 3 shows the AUC scores
for different values of A and ~. From Fig. 3(a), we can observe
that /;-norm sparsity controls the tradeoff between precision
and recall well and the AUC values are robust when A\ is
between 0.04 and 0.08. Therefore we used A = 0.06 for all
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Fig. 4. ROC curves for video 001 to 005.
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the experiments. Fig. 3(b) shows the AUC scores for different
values of ~, from which we can observe that the AUC values
are robust when ~ is between 2 and 10. Therefore we used
~ = 8 for all the experiments.

B. Detection Performance

Fig. 5 shows saliency detection results for two frames in
video 001. Although WSCF did not detect saliency at the
true gaze position marked by the red circle, the proposed
algorithm, SGP, assigns high saliency to there. The user’s
gaze was on seemingly unimportant positions, which were in
fact not salient based on the classical definition; but our FPV
saliency did not miss that gaze.

IV. CONCLUSION

We proposed a novel supervised gaze prediction method
based on sparse coding, which compared favorably to the
existing sparse coding based method. The novel technical
element was the introduction of gaze positions for building
the supervised dictionary to take into account gaze/action
association in FPV.

Our proposed idea can be extended in several ways. Since
the human gaze behaves differently for performing different
actions, it will be important to discover when the supervised
framework is most useful. If we specify in more detail the type
of actions, for example cooking actions, we may incorporate
domain knowledge like food detection with convolutional
neural networks [23].
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Gaze prediction by WSCF and SGP with the original frame. The red circles are the gaze position of the user.
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