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Abstract—This paper presents an approximate Bilateral Fil-
ter(BF) with a GPU-friendly architecture for 3D volume data.
The bilateral filter (BF) for 3D volume data such as medical
images highly costs due to an enormous number of voxels to be
processed. Existing acceleration methods called constant-time,
or O(1), BF are inappropriate for GPU processing because they
consist of a combination of O(1) spatial filters not to fit to parallel
processing. The proposed method realizes a fast approximation
3D-BF by focusing two points: (1) the BF is decomposed into
multiple Gaussian Filters and (2) GPU processing is suitable for
convolution. As a consequence, proposed method achieved fast
and high approximate accuracy in various window size.

I. INTRODUCTION

The Bilateral Filter (BF), named by Tomasi and Manduchi
[1] and also proposed as SUSAN [2] or non-linear Gaussian
filter [3], is a fundamental method for edge-preserving smooth-
ing in image processing. The BF is applied to denoising [4],
stereo matching [5] and medical image processing [6]. Since
the BF highly costs as compared with linear filters, it is an
important task for many applications to accelerate the BF.

3D volume data have been widely used recent years in 3D
medical imaging and 3D data modeling. Since volume data
generally contain some noise such as Fig.1, it is demanded to
use the BF for denoising volume data. As a major difficulty,
3D-BF highly costs due to an enormous number of voxels
and the computational complexity increased with the number
of dimensions. Specifically, if the BF has window length n,
the computational complexity per pixel/voxel increases from
n2 in 2D to n3 in 3D. In fact, the state-of-the-art constant-
time (O(1)) BF [6], [7] requires tens of seconds for processing
3D data. Here, the order O(1) indicates that processing time
per pixel/voxel does not depend on window length but still
depends on the number of dimensions. Hence, we desire an
accelerated BF for 3D volume data.

GPU accelerates image processing by calculating all pixels
in parallel. GPU based approach would be also effective to ac-
celerate 3D-BF; however, most existing GPU implementations
of the BF have focused on 2D images, not 3D volume data.
The efficient GPU implementation of the naive BF [8] cannot
be applicable to 3D case because of the limitation of memory
size. The approximation method for GPU [9] targeted 2D
case and takes time for achieving high approximate accuracy.
Since the 3D-BF using GPU [10] discussed denoising accuracy
and acceleration with parameter adjustment, it did not care
about change of window size. Moreover, the existing O(1)
BF does not fit to the architecture of GPU processing due to

Fig. 1. A 3D medical image [6] and the denoised image that shows denoising
performance of BF.

the algorithm structure of computing pixels sequentially. Thus,
although 3D-BF on GPU seems to show its high potential, it
has not been explored in detail yet in the literature.

This paper presents an approximate BF with a GPU-friendly
architecture for 3D volume data. The O(1) BF has poor
parallelism due to consisting the O(1) GFs. On the other
hand, Gaussian convolution is suitable for parallel processing.
In the proposed method, O(1) GF is calculated as naive
convolution by using GPU. The proposed method needs to
calculate multiple GFs; however, the processing time is faster
than naive BF implemented in GPU since it is suitable for use
with GPU. As a result, the proposed method was tens of times
faster than the GPU implementation of naive BF.

II. RELATED WORK

A. Bilateral Filter

The BF [1]–[3] is a generalization of the Gaussian filter
(GF) that is a target pixel/voxel is additionally weighted by
luminance values around the current pixel/voxel and then
normalized. Let p ∈ S be a voxel coordinate in the 3D image
area S ⊂ Z3 and fp ∈ R its voxel value. The BF is defined
by

f̂p :=

∑
q∈S gs(p, q) gr(fp, fq) fq∑
q∈S gs(p, q) gr(fp, fq)

, (1)

where gs(·) and gr(·) denote weight functions called spatial
kernel and range kernel, respectively. The most widely-used
spatial and range kernels are the Gaussian kernel

gs(p, q) = e
−||q−p||22

2σ2
s , gr(a, b) = e

−(b−a)2

2σ2
r , (2)
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where σs > 0 and σr > 0 are parameters called spatial scale
and range scale, respectively. The computational complexity
of the BF depends on the window area supported by spatial
kernel. Gaussian spatial kernel is used, the window area is
truncated at a position where the kernel is attenuated suffi-
ciently. We calculate the 3D window area by (2⌈3σs⌉+ 1)3.

B. Constant-time bilateral filter

The constant-time (O(1)) BF [6], [7], [11] is an approximate
BF whose computational complexity is O(1) per pixel/voxel.
Most O(1) BF is approximated by an appropriate combination
of multiple GFs where each GF is implemented by O(1) GF
[12]–[16]. This framework can be summarized as follows: Let
us consider approximating range kernel by the separable form

gr(a, b) ≈
K−1∑
k=0

ϕk(a)ψk(b), (3)

and then, by substituting (3) for (1), we obtain

f̂p ≈
∑K−1

k=0 ϕk(fp)
∑

q∈S gs(p, q){ψk(fq)fq}∑K−1
k=0 ϕk(fp)

∑
q∈S gs(p, q){ψk(fq)}

. (4)

In (4), each summation
∑

q∈S can be interpreted as applying
GF to an image since the terms {·} indicate intermediate
images generated from the input image. Thus, the BF is
decomposed into 2K of GFs in total of numerator and de-
nominator. Because of separability of Gaussian spatial kernel
(2), a D-dimensional GF can be separated into D of 1D-GFs.
As a whole, the O(1) BF has computational complexity of
O(K) per pixel/voxel.

For example, the Compressive BF [7] is a state-of-the-
art O(1) BF that decomposes Gaussian range kernel into
cosine functions. Since Gaussian range kernel is an even
function whose spectrum attenuates exponentially, it is well
approximated by a sum of a few cosine terms as

gr(a, b) ≈
M∑

m=0

αm cos (ω0m (a− b)) (5)

where ω0 = 2π/T indicates a basic angular frequency, T is
cycle length and αm is Fourier coefficient, which are obtained
by optimization. Using addition theorem in (5),

gr(a, b) ≈
M∑

m=0

αm cos (ω0ma) cos (ω0mb)

+

M∑
m=1

αm sin (ω0ma) sin (ω0mb) . (6)

Comparing (6) with (3), we find out that ϕk(a) corresponds to
αm cos(ω0ma) and αm sin(ω0ma) and that ψk(b) corresponds
to cos(ω0mb) and sin(ω0mb). Thus, the Compressive BF
consists of 4M + 1 convolutions.

III. PROPOSED METHOD

A. Analysis

The naive BF has the following problems in GPU imple-
mentation. For accelerating GPU computation, it is important
to reduce memory access cost by aggressively using the shared
memory (SM) on GPU. For example, an operation such as
convolution or the BF accesses the same voxel many times.
We can reduce access cost to voxel data by transferring in
advance a subimage of an input image onto the SM. However,
the size of SM is generally small as compared with global
memory on GPU, e.g., just 48 KB (=12,288 floating-point
numbers) in a relatively-new GPU. This limits the size of a
subimage to 233 (= 12167 < 12288) voxels in 3D case. Since
the window size has to be smaller than the subimage, the above
implementation method works well only when σs < 3. In 2D-
BF, Jonas [8] accelerated it by choosing an appropriate size
for subimage under the size limitation of SM. However, the
limitation interferes with establishing an efficient 3D-BF.

Another problem is that GPU structure is not suitable for the
conventional O(1) BF. As described above, O(1) BF consists
of multiple O(1) GF which runs voxel by voxel. O(1) GF
calculates new voxel by using the value of voxel that has
already been calculated. This sequential calculation is difficult
to parallelize by GPU; therefore, O(1) BF as combination of
O(1) GF is also difficult to calculate efficiently.

B. Methodology

Algorithm 1 Procedure of the proposed method

1: ▷ f : target image, σs: spatial scale, σr: range scale, τ : tolerance
2: function PROPOSEDMETHOD(f , σs, σr, τ )
3: ▷ Parameter Setting
4: Set the optimum value for M,T
5: ▷ DC-component filtering (m = 0)
6: b0 ← 1
7: b← GAUSSIANFILTER ON GPU(f , σs)
8: ▷ AC-component filtering (m ≥ 1)
9: for m← 1 to M do

10: am ← 2 exp
(
− 1

2 (ω0mσr)
2
)

11: c, s← cos(ω0mf), sin(ω0mf)
12: ▷ Partial decompression for denominator β0

13: Ψc ← GAUSSIANFILTER ON GPU(c, σs)
14: Ψs ← GAUSSIANFILTER ON GPU(s, σs)
15: b0 ← b0 + am{c⊗Ψc + s⊗Ψs}
16: ▷ Partial decompression for numerator β
17: Ψc ← GAUSSIANFILTER ON GPU(c⊗ f , σs)
18: Ψs ← GAUSSIANFILTER ON GPU(s⊗ f , σs)
19: b← b+ am{c⊗Ψc + s⊗Ψs}
20: end for
21: return b⊘ b0

22: end function

Similar to O(1) BF, the proposed method uses (4), which
consists of multiple GFs. In order to efficiently compute it
on GPU, we use naive convolution instead of O(1) GF as
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Fig. 2. Processing time of 3D-GF with/without SM and 1D-GF × 3 with
SM when image size is 5123.
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Fig. 3. Processing time of 3D-BF with/without SM and the proposed method
when image size is 5123.
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Fig. 4. Processing time of the proposed method when M = 3, 4, 7. The
parameter M = 4 equals to Fig.3.
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Fig. 5. Approximate accuracy between naive BF and the proposed method
when M = 7, 4, 3, 3 against σr = 0.05, 0.10, 0.15, 0.20, respectively.

shown in Algorithm 1. This approach can solve the two
aforementioned problems. First, we avoid the problem of low
parallelism using naive convolution. It is well known that
GPU calculates convolutions fast due to their high parallelism.
Therefore, the computational time of GF on GPU would be
faster than that of O(1) GF if window size is not extremely
large. Second, we can considerably relax the problem of SM
size in 3D case. Because of the separability of Gaussian kernel,
3D-GF can be decomposed into three 1D-GFs. Conceptually,
in the case of 1D convolution, SM can support much larger
σs because subimages are also 1D. If SM size is 48 KB, it
can support σs = 100 or more in theory. In addition, since the
computational complexity increases linearly with dimension
increase, the proposed method is still effective for 3D cases.

Computational complexity per voxel is O(σ3
s) in naive

3D-BF, O(K) in O(1) BF, and O(Kσs) in the proposed
method. Although the computational complexity of the pro-
posed method depends on window length, the computational
time would be faster than that of O(1) BF in practice. Since the
total computational time of the proposed method is dominated
by the multiple GFs, it would nearly equal to 2K of GFs.

IV. EXPERIMENT

In our experiments, we used an NVIDIA Geforce GTX
1080Ti GPU and an Intel Xeon E5-1620 v4 @ 3.50 GHz CPU,
and 16 GB main memory. We implemented all the methods in

C++ with CUDA 6.0. We used Compressive BF [7] as O(1)
BF for decomposing BF into naive Gaussian convolutions
calculated on GPU where the number of convolutions is
4M + 1. We used mirror image inversion to reference voxels
outside of image area in convolutions. The test image consists
of 5123 voxels with 32-bits floating point. We set spatial scale
σs ∈ [1, 10] and range scale σr = 0.1.

First, we confirm computational time of GF on GPU. Fig.2
shows experimental results of 3D-GF unused SM (3D-GF
w/o SM), 3D-GF using SM (3D-GF w/ SM), and 3D-GF
decomposed into three 1D-GF using SM (1D×3 w/ SM).
Comparison of the former two shows that using SM accelerates
convolutions. SM is not effective in 1 < σs from limit of the
SM size. On the other hands, the processing time of 1D-GF×3
w/ SM is more than 50 times faster than 3D-GF w/o SM in
any σs since it is not limited to SM size. Hence, the proposed
method implements BF by using 1D-GF×3 w/ SM.

The computational times of 3D-BF is shown in Fig.3 for
comparing 3D-BF unused SM (3D-BF w/o SM), 3D-BF
using SM (3D-BF w/ SM), and the proposed method. In this
case, we set to M = 4. i.e., decomposed into 4M +1 = 17 of
GFs. The processing time of the proposed method is about 20
times of that of 1D-GF×3 w/ SM. This result is close to our
expected ratio (17 times). When σs ≤ 10, the other processing
time is dominated by transferring time of subimages, that is
about 191 [ms] on average. The total time is less than 1000
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(a) σs = 1

(b) σs = 3

(c) σs = 5
Fig. 6. Cross sectional view of 3D medical images and the results of 3D-BF. From left to right, input, naive BF, proposed method, and difference between
naive BF and proposed method. Differential images are amplified 8 times.

[ms] when σs = 10. The processing time is proportional to M
as shown in Fig.4. Furthermore, when the proposed method
works even with a very large window size, e.g., σs = 50 and
we set subimage size appropriately, the computational time
was nearly theoretical value 3104 [ms].

Fig.5 shows approximate accuracy between naive BF and
the proposed method in various σr. We quantified the accuracy
as Peak Signal-to-Noise Ratio (PSNR). Since smaller σr
becomes lower PSNR in Compressive BF, we set M =
7, 4, 3, 3 when σr = 0.05, 0.10, 0.15, 0.20, respectively. The
result shows that PSNR decreases with increase of σs. From
this results, it seems necessary for maintaining approximate
accuracy to increase the number of GFs for larger σs. If we
assume 50 [dB] indicates sufficient accuracy, the proposed
method achieves it over a wide range as σs ≤ 10.

Furthermore, we experimented with another image that is
a real 3D medical image called ”Foot” [6] (2563 voxels with
16-bits integers). Fig.6, Fig.7, and Fig.8 show the result image,
processing time, and approximate accuracy, respectively. Each

row in Fig.6 aligns the input image, the output images of
the naive BF and the proposed method, and their differential
images in order from the left. Each column changes σs
and viewpoint. From Fig.8, approximate accuracy exceeded
50 [dB] when σs ≤ 5 and the results cannot be visually
distinguished by appearance as shown in Fig.6. The processing
time is about 8 times faster than the case of the image
size 5123, which also followed the theoretical expectation
5123/2563 = 8. If the image size is not simply halved in
each dimension, we have to flexibly adjust parameter values
such as subimage size. Otherwise, the processing time seems
to be slightly increased or decreased.

Finally, we show the approximate accuracy against various
σr in the test image, ”Foot” and the Stanford volume data
archive ”CThead” [17] that is other medical image. Spatial
scale σs is fixed two and five. Note that each σr is multiplied
by the maximum luminance value in each images and M is
not fixed. As shown in Fig.9, the PSNR alomost exceeded
50[dB] in those cases.
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Fig. 7. Processing time of 3D-BF in the medical image ”Foot”.
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Fig. 8. Approximate accuracy between naive BF and the proposed method in
the medical image ”Foot”.
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Fig. 9. Approximate accuracy versus σr . Left graph sets σs = 2 and right one sets σs = 5.

V. CONCLUSION

This paper proposed an approximate 3D-BF efficient for
GPU. In the experiments of 5 < σs, the naive 3D-BF took
some minutes; by contrast, the proposed method was able to
be processed in less than 1 [s]. The approximate accuracy
achieved over 50 [dB], which is visually sufficient. A large
window size (σs = 50) can be also performed well. In
addition, the proposed method is also considered to be easy
to expand to a higher dimension because of separability of
Gaussian spatial kernel. The proposed method can be expected
to be widely used for 3D data processing such as medical
images and high-resolution images.
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