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Abstract— Based on convolutional neural network (CNN), 

the problem of robust patch level camera model identification is 
studied in this paper. Firstly, an effective feature representation 
is proposed by concatenating a multiscale residual prediction 
module as well as the original RGB images. Motivated by 
exploration of multi-scale characteristic, the multiscale residual 
prediction module automatically learn the residual images to 
avoid the subsequent CNN being affected by the scene content. 
Color channel information is integrated for enhanced diversity 
of CNN inputs. Secondly, a modified richer convolutional feature 
network is presented for robust camera model identification by 
fully exploiting the learnt features. Finally, the effectiveness of 
the proposed method is verified by abundant experimental 
results at the patch level, which is more difficult than image level 
experiments. 

I. INTRODUCTION 

Camera model identification has long been a hot topic in 
image forensic tasks. Given an image under investigation, 
camera model identification (CMI) can assist in identifying 
owners of illegal and disputed materials, as well as solve 
image copyright problems to some extent. The rationale for 
CMI is that there is sequence of operations performed inside 
the camera to obtain the digital images, such as lens 
aberration, demosaicing, white balance and so on. Each 
operation leaves an intrinsic and irreversible trace in the 
image, based on which stable CMI can be performed.  

Traditional camera model identification methods rely on 
well-designed handcrafted features. There have been 
extensive features exploited for camera model identification, 
such as the CFA color features [1], de-mosaic trace [2] and 
features based on other image characteristics [3]. It is 
acknowledged that residual features usually lead to 
competitive performance for robust CMI [4]. As the CMI 
information is a relative weak signal compared with the image 
content, residual image is obtained by subtracting a denoised 
version from the original image for the first step. Based on 
estimated residual image [5], several features [6][7] can be 
constructed for CMI purpose. However, traditional residual 

based methods are usually influenced by image content due to 
the imperfection of denoising filters. Performance of smooth 
regions is often better than that in edge and texture areas, 
making these methods somewhat limited. Besides, method 
noise [8] related to certain denoising algorithm introduces 
artifacts, which will leave trace in estimated residual images, 
thus inevitably it will influence later CMI accuracy.  

In the past few years, convolutional neural networks have 
demonstrated superior performance in many image forensics 
tasks [9][10]. Luca et.al. pioneered the first application of 
CNN in CMI [11], while a content-adaptive fusion residual 
network is proposed in [12] to achieve simultaneous brand 
level, model level, and device level source camera 
identification. Integrating with pre-trained model, the 
effectiveness of DenseNet in CMI is discussed in [13][14]. A 
high-pass filter is utilized for residual image estimation before 
CNN in [15]. The authors studied the constrained convolution 
layers as preprocess procedure in [16][17]. The intrinsic 
feature learning capability of CNN approaches have greatly 
improved CMI accuracy. However, there is always space for 
performance improvement by fully exploiting the learnt 
features. 

In this paper, a CNN based robust camera model 
identification method is presented. Firstly, a multiscale 
residual prediction module with constrained convolutional 
layer is proposed to automatically integrate information in 
different local neighborhoods. Secondly, enhanced data 
diversity is achieved by simultaneous incorporating learnt 
residual images as well as the original images as inputs for 
network training. In this way, color interpolation information 
can also contribute to provide multiple cues for robust CMI. 
Thirdly, a modified richer convolutional feature network is 
proposed to perform camera model identification based on 
image patches. Finally, our experimental results are all based 
on small image patches, which is more practical. 

The rest of this paper is organized as following. Section 2 
discusses the related works of residual image estimation and 
CNN structures. Details of the proposed CMI algorithm is 
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discussed in Section 3. Section 4 presents the evaluation 
protocol and experimental results, while Section 5 concludes 
the work. 

II. RELATED WORKS 

A. Residual Image Estimation 

Residual computation is the first prerequisite for many CMI 
algorithms, as the camera model specific information is often 
coded in weak signals as compared with the image content. 
Given an image I, Residual R is usually obtained by denoising 
as: 
 

( ) ,R I F I= −  (1) 
 
where F(•) denotes the denoising algorithm. The wavelet 
domain adaptive denoiser adopted in [5] is a common choice 
for many CMI algorithms, whose performance is unsatisfying 
that severe artifacts can be observed in edge and texture 
regions in estimated residual images.  
   The idea of residual estimation has also been exploited in 
CNN based CMI algorithms. Amel et al. [15] employed a 
fixed high-pass filter for residual calculation 
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before subsequent convolutional layers. The estimated 
residual images are then served as input for CNN structure, so 
that more complex camera model features could be 
automatically learnt by the data-driven model. However, the 
diversity of CNN features is relatively limited by using a 
predetermined high-pass filter.  
   Belhassen et al. [18] proposed a constrained convolutional 
layer to suppress the influence of image content. They fixed 
the center value of the convolution kernel weight to -1, and 
the surrounding weights summed to be 1, i.e. 
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where (1) ( , )ωk m n denotes the kth filter coefficients in the first 

layer at corresponding position (m, n). In this way, these 
convolution kernels are constrained to be high-pass kernels 
and residual estimation can be achieved in fully end-to-end 
manner. However, only 3 constrained kernels with fixed size 
of 5×5 is adopted in the green channel of input RGB images.  

B. CNN Architechture for CMI 

Relatively simple CNN network structure is adopted in the 
first CNN attempt [11] for camera model identification. CNN 
serves as an efficient feature extractor where the CMI result is 
obtained by cascaded trained SVM classifier. A systematic 
performance evaluation protocol is proposed, where overall 

accuracy of 93% is reported on carefully selected 18 camera 
models in Dresden database [19]. Experiments prove that it 
can achieve satisfactory generalization ability.  

Amel et al. [15] studied the scalability problem in CNN 
network design, and reported a small network consisting of 
three convolutional layers, one pooling layer and three fully 
connected layers. This network is based on modification of 
the AlexNet, which leads to comparable performance with 27 
layers of GoogleNet model. 

In [16], based on experimental evaluation of several CNN 
design principles, a network is proposed with constrained 
convolutional layer, ReLU activation and max pooling. The 
authors further enhanced the low-level feature extraction part 
by involving nonlinear median filtered residuals to construct 
augmented convolutional feature maps (ACFM) in [17]. 
Remarkable performance improvement demonstrated the 
significance of effective feature representation module design 
in CNN. 

III. THE PROPOSED CMI ALGORITHM 

Camera model identification performance drops 
dramatically with the decrease of patch size. In this paper, we 
constrain all discussion into patch level evaluation that the 
input images are divided into non-overlapping small image 
patches. The framework of proposed method consists of two 
major parts, namely the feature representation module with 
multiscale residual prediction concatenated with original 
image patches, and the modified richer convolutional feature 
network for camera model identification.  

A. Feature Representation Module with Multiscale 
Residual Prediction 

Effective feature representation module should be able to 
provide abundant CMI related features, while excluding 
feature extraction method related noises which would confuse 
subsequent CNN layers. To this end, the data-driven 
constrained convolutional layer is adopted as a basic 
component for residual image estimation. The proposed 
feature representation module is illustrated in Fig.1. 
 

A multiscale residual prediction module consisting of three 
parallel constrained convolutional layers with varying local 
sizes of 3×3×3, 5×5×3 and 7×7×3 is included to reduce the 
impact of scene content. Three constrained convolutional 
kernels are allowed in all pathways of R1, R2, and R3. 
Parameter settings of in-camera operations employed by 
different manufacturers will leave traces in different local 
neighborhoods. In contrast to [16], where only green channel 
is passed into CNN, the constrained convolutional layers are 

 

Fig. 1   Flowchart of the feature representation module. 
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applied to all RGB channels in the proposed scheme. 
Although the green channel carries a lot of information 
related to sensor pattern noise, the RGB three-channel images 
can reflect the interpolation trace, which could help CMI. 
Joint representation of these multiscale features in all color 
channels is expected to provide richer CMI related 
information.  

It is worth mentioning that, the constrained convolutional 
layer can be trained just like a normal convolutional layer. 
During backpropagation, the weights of the convolution 
kernel are updated at each iteration by using a stochastic 
gradient descent algorithm. The constraints are added to 
constrained convolutional layer when updating the weights, so 
that the weight of the convolution kernel center is -1, and the 
sum of the other weights is 1. After completing the above 
constraints, the updated convolution kernel weights are 
returned.  

 We visualized the learnt constrained convolutional kernels 
in Fig 2. It can be found that the convolution kernels are all 
high-pass filters with the central coefficient shown in black, 
which can reduce the influence of image content to a certain 
extent. Meanwhile, kernels in different scales demonstrate 
varying properties, which are complementary to each other 
for providing rich features for subsequent CNN architecture.  
 

 
Meanwhile, the original image patches also constitute an 
important part in effective feature representation that they 

contain color interpolation information which contributes to 
distinguishing different camera models. Therefore, original 
RGB patches are retained as the input for subsequent CNN 
layers. 

B. Richer Convolutional Feature Network 

The proposed CMI network is inspired by the richer 
convolutional feature (RCF) network [20]. Guided by the 
principle of making full use of learnt CNN features instead of 
seeking deeper network structure, RCF achieves state-of-the-
art performance in edge detection. The principle of fully 
exploring richer CNN features naturally fits to our motivation 
for robust camera model identification.  

The proposed network architecture is shown in Fig.3, 
where VGG16 is adopted as the backbone network. 
Depending on number of pooling layers applied, all 
convolutional layers are divided into five stages, each 
followed by ReLU and max pooling layers. In contrast to the 
local multi-scale features discussed in section 3.A, this fine to 
coarse decimation scheme provides another form of multi-
scale feature representation in a global manner. A conv layer 
with kernel size 1×1 and channel depth 21 is utilized to 
accumulate features from multiple stages, where following 
eltwise layer (shown as ∑ in Fig.3) to attain hybrid features. 

Since the CMI task is essentially a classification problem, 
the deconvolution layers of the RCF network are removed. To 
overpass the disadvantages of training difficulty and large 
parameter volume of fully convolutional layer, each eltwise 
layer is connected to a global average pooling (GAP) layer 
before they are passed into FC layers for classification. The 
number of nodes in FC layers are set to number of camera 
models to be discriminated and network parameters are given 
in detail in Fig.3. Final classification output is obtained by 
softmax of accumulated FC outputs by eltwise layer. 

 
Fig. 3   The architecture of proposed CNN network. 

 
Fig. 2   Visualization of constrained convolutional kernels in 

multiscale residual prediction module. 
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IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

Abundant experiments are carried out on selected camera 
models from the largest public image forensic Dresden 
database [19]. Camera models with only one camera device is 
excluded to avoid the influence of a single camera device on 
camera model features. Totally 12 camera models are selected 
according to this principle, whose detail information is given 
in Table I. When dividing the 7650 images into training set, 
validation set, and test set, we restrict their scene content to be 
inconsistent with each other. To further increase the 
evaluation difficulty, the test set are consisted of images 
coming from camera devices never appeared in the training 
set nor the validation set. Finally, the training set contains a 
total of 403,072 image patches and the validation set consists 
of 66,800 image patches. There are approximately 600,000 
image patches in the test set.  
 

TABLE I 
CAMERA MODELS USED IN THE EXPERIMENTS. 

No. Camera model 
Original 

Resolution 
No. images 

0 Canon_Ixus70 3072×2304 363 

1 Casio_EX-Z150 3264×2448 692 

2 Kodak_M1063 3664×2748 1698 

3 Nikon_CoolPixS710 4352×3264 695 

4 Nikon_D200 3872×2592 373 

5 Olympus_mju-1050SW 3648×2736 782 

6 Praktica_DCZ5.9 2560×1920 766 

7 Ricoh_GX100 3648×2736 559 

8 Rollei_RCP-7325XS 3072×2304 377 

9 Samsung_L74wide 3072×2304 441 

10 Samsung_NV15 3648×2736 412 

11 Sony_DSC-T77 3648×2736 492 
 
All evaluation are conducted on a patch level that all 

training and test images are divided into non-overlapping 
patches of 64×64 pixels, while 64 patches are randomly 
selected from each of the training and test images. All CMI 
accuracy experimental results are based on patch-level 
evaluation:  

 

No. of Correctly classified patches
100%.

Total No. of test patches
Accuracy = ×  (4) 

 
The patch-level evaluation is closer to the real CMI 
application scenario and is much more difficult as compared 
with the image-level classification where major voting 
strategy is adopted [11]. 

The experiments are conducted on a PC with Intel(R) 
Core(TM) i5-8500 CPU @ 3.00 GHz, equipped with a 
NVIDIA GTX 1080Ti GPU on Ubuntu 16.04 operating 
system under the caffe framework. The learning rate is 
initialized to 10-3, while the weight decay and momentum are 
set to 0.00075 and 0.9, respectively. Stochastic gradient 
descent (SGD) optimization method is utilized. 

B. Experiment 1: Comparison of color channel input 

In [16-18], only green channel is utilized as it carries most 
of the sensor pattern noise information and the least 
interpolation noise. However, all color channels are utilized in 
the proposed multiscale feature representation module. The 
abandonment of red and blue color information may have 
impact on the final classification results as interpolation trace 
is also useful in camera model identification. 

In order to verify that the three color channels can 
contribute to camera model classification, we performed a 
comparative experiment based on the CNN model in [11]. 
With fixed network structure, the only difference between two 
comparative scheme is the color channel input (which may 
slightly affect the depth of the first CNN layer kernels). 

 
TABLE II 

CMI ACCURACY COMPARISON OF DIFFERENT COLOR CHANNEL INPUT. 
Methods Accuracy (%) 

G channel image 81.64 
RGB channel image 90.93 

 
As shown in Table II that, average classification accuracy 

is improved by 9.29% when after adopting the three color 
channel inputs, verifying that the RGB three channel 
information trained together can indeed facilitate the CMI 
application. 

C. Experiment2: Comparison of multiscale residual 
prediction module 

The proposed feature representation module is consisted of 
multiscale residual prediction module and RGB information. 
In order to determine the optimal structure of the multiscale 
residual prediction module, we have experimentally tested 
several combination structures. Since the constrained 
convolutional layer adopted in [16] is 5×5, it is employed as 
the benchmark. Modified RCF network structure is fixed for 
fair comparison, but network structure are trained respectively 
for camera model identification. 

 
TABLE III 

CMI ACCURACY COMPARISON OF DIFFERENT 
 MULTISCALE RESIDUAL PREDICTION MODULE STRUCTURES. 

Structures of the 
 residual prediction module  

Accuracy (%) 

5×5 96.52 

3×3+5×5 96.67 

3×3+5×5+7×7 97.03 

3×3+5×5+7×7+ I 98.05 
 
From comparison results in Table III, we see that the 

proposed multiscale residual prediction module achieves best 
CMI accuracy as expected. Furthermore, the integration of 
RGB channels brings additional 1.02% performance 
improvement. 

D. Experiment 3: Comparison of network structures 

In order to test the effectiveness of the proposed modified 
RCF network, we report CMI accuracy with fixed feature 
representation module in Table IV. Only the CNN structure in 
[11] is designed for 64×64 patches, which is the same as our 
setting. 
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TABLE IV 

CMI ACCURACY COMPARISON OF NETWORK STRUCTURES. 
Methods Accuracy (%) 

Feature representation module + CNN 87.16 
Feature representation module + RCF 98.05 
 
Prominet performance improvement can be observed in 

Table IV, demonstrating the effectiveness of the proposed 
RCF network that more camera model related features and 
underlying interrelation can be learnt. One may be noticed the 
gap between the ‘Feature representation module + CNN’ 
method and the ‘RGB channel image’ method in Table II that, 
the adoption of multiscale prediction module causes 
performance decrease. As we have observed convergence 
difficulty during our experiments, possible explanation is that 
the simple CNN network structrure in [11] is unable to 
capture the internal relationship between features and camera 
models. Noticing the 98.05% accuracy of the proposed 
method, this happens to add evidence for the effectiveness of 
the modified RCF structure. 

E. Experiment 4: Comparison with other CMI methods 

For the last experiment, we compare the proposed method 
with state-of-the-art methods, including Luca bondi [11] 
method, Amel TUAMA[15] method and two methods [16][17] 
from Belhassen Bayar. However, this comparison is not easily 
performed as the database, selected camera models, patch 
sizes all varies with each other. For instance, the networks in 
[15-17] are initially designed for 256×256 patches, which is 
easier as compared to the setting in this paper. To make them 
compatible to 64×64 patches, we adjusted the network 
structure by: 
 Set the stride of conv3 layer to 1 in [15]; 
 Change the stride of conv2 layer from 2 to 1 in [16-17]; 
 Increase the padding parameter by 1 for conv2, conv3 

and conv4 layers in [16-17]. 
We followed other default parameters settings suggested by 
authors to make a fair comparison of different methods.  

 
TABLE V 

ACCURACY COMPARISON OF DIFFERENT CMI METHODS. 
Methods Accuracy (%) 

Luca bondi [11] 90.93 
Amel TUAMA[15] 93.77 

Belhassen Bayar [16] 87.42 
Belhassen Bayar [17] 96.78 

Our proposed methods 98.05 
 
From the comparison results in Table V, it can be observed 

that the proposed method achieves the best CMI accuracy. 
Furthermore, it is necessary to emphasize that the proposed 
method is a fully data-driven method that is convenient in 
application. There is no need to go through additional 
cumbersome procedures, such as high-pass filtering and 
median filtered image feature extraction, etc.  

V. CONCLUSIONS 

A CNN based robust camera model identification method is 
proposed in this paper. An effective feature representation 
module is proposed to provide richer camera model related 

features, by employing a multiscale residual prediction 
module to ease the influence of scene content, as well as 
integrating the RGB color channels to provide color 
interpolation information. A modified richer convolutional 
network is proposed to make fully exploitation of learnt 
features. The effectiveness of the proposed method is verified 
with large scale patch-level experiments which is designed to 
mimic the real CMI applications.  
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