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Abstract—Speech enhancement is an important 

task of improving speech quality in noise scenario. 
Many speech enhancement methods have achieved 
remarkable success based on the paired data. 
However, for many tasks, the paired training data is 
not available. In this paper, we present a speech 
enhancement method for the unpaired data based on 
cycle-consistent generative adversarial network 
(CycleGAN) that can minimize the reconstruction 
loss as much as possible. The proposed model 
employs two discriminators and two generators to 
preserve speech components and reduce noise so that 
the network could map features better for the unseen 
noise. In this method, the generators are used to 
generate the enhanced speech, and two 
discriminators are employed to discriminate real 
inputs and the outputs of the generators. The 
experimental results showed that the proposed 
method effectively improved the performance 
compared to traditional deep neural network (DNN) 
and the recent GAN-based speech enhancement 
methods. 

I. INTRODUCTION 

Speech enhancement is used to improve speech quality 
and intelligibility of the degraded speech [1]. Speech 
enhancement covers a wide range of the applications, 
including teleconferencing, military eavesdropping, 
hearing aid devices and speech recognition devices. 
Moreover, it is a pre-processing module for the speech 
coding and recognition systems. Conventional single-
channel speech enhancement methods, such as spectral 
subtraction [2], Wiener filtering [3], statistical model-
based methods [4], and subspace algorithms [5, 6] often 
cause inaccurate spectral estimation of clean speech 
under non-stationarity noise environment. With the 
advance of the deep learning, deep neural network 
(DNN) has been applied in speech enhancement 
effectively. For example, the masking estimation 
method [7] was proposed based on the input features of 
noisy speech using a DNN. This method transformed 
the speech enhancement problem into a classification 
problem, in which the mapping function that is well 
trained could minimize the loss between the features of 

the enhanced speech and clean speech. In this case, the 
clean speech and the enhanced speech are paired for the 
training so that the supervised learning system is 
conducted. Generally, this kind of the paired data is 
impossible since the features and energy of noise varies 
with the time and scenario, that is, the varying noise 
could not match the speech signal. This unpaired data 
easily results in a mismatch of energy distribution of 
speech in frequency domain and makes the 
generalization skill of the DNN decreased.  

The Generative Adversarial Networks (GANs) [8] 
have provided a possibility for the unpaired training 
data since it could generate the required output from the 
distribution of real data via adversarial training. At least, 
the GANs [9, 10] have provided better performance 
than the DNN in the paired data or supervised system. 
For example, Santiago Pascual et al. first applied GANs 
into the supervised speech enhancement based on the 
paired data [9]. Since obtaining the paired training data 
is a difficult and expensive task, the CycleGAN was 
considered for the unpaired training data in [11].  The 
basic idea of the CycleGAN is that the forward and 
backward mappings are simultaneously learned with the 
adversarial loss [12] and the cycle-consistency loss [13], 
where the cycle-consistency loss is used to constrain the 
parts of input information and the adversarial loss is 
used to identify the generated output or real input. These 
two losses are comprised of final cost function.  

In this paper, we propose a new speech enhancement 
method that uses the CycleGAN to improve 
enhancement performance for the unpaired data. It is 
known that the CycleGAN has successful application in 
the fields of image processing. Due to the special 
structure of the CycleGAN, it’s possible for it to 
enhance noisy speech recorded by different devices in 
real life.  Specifically, our proposed model contains two 
generators, namely G and F and two discriminators, 
namely Dx and Dy. The function of generator G is to 
finish a mapping from x to y such that the outputs yො =
G(x) while the generator F is used to finish a mapping 
from y to x. Thus, the G and F could keep an inverses 
relationship. Two discriminators are used to 
discriminate real inputs and the generated outputs. The 
single optimization of adversarial cost function often 
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leads to the mode collapse, that is, all inputs have the 
same output and the optimization process cannot be 
performed, so the cycle consistency loss [13] is added to 
meet F(G(x)) ≈ x  and G(F(y)) ≈ y . In this case, the 
speech is well preserved while the noise is effectively 
reduced for the unseen data.  

The rest of this paper is organized as follows. Brief 
introduction of the CycleGAN and the detailed 
description of the proposed method are presented in 
Section II. The experimental results compared to the 
reference methods are given in Section III. Finally, we 
draw a conclusion in Section IV. 

II. PROPOSED METHOD 

A. Cycle-consistency Adversarial Network 

The GANs work well for the paired data.  For the 
unpaired data, it has a problem, that is, the output 

 ŷ G x   of the generator G cannot be distinguished 

from output domain of y by an adversarial network. In 
principle, the cost function can make the output y close 
to the input x through optimizing G [8]. Such mapping 
produced by G cannot guarantee one-to-one relationship 
between input x and output y. This often causes mode 
collapse of the networks. Based on this view, an inverse 
generator F that maps output y to input x is considered 
for optimizing the cost function in this paper. Except for 
two mappings generated by G and F, two adversarial 
discriminators Dx and Dy are used in this paper, where 
Dx is used to distinguish x and F(y) , Dy is used to 

distinguish y and G(x) .  

In addition, the proposed method employs two cost 
functions, namely adversarial cost function and cycle 
consistency cost function, where the adversarial cost 
function can make the generated output similar to the 
input and the cycle consistency cost function can 
prevent G and F from contradiction each other. The 
training procedure is illustrated in Fig.1. As shown in 
Fig. 1, the training process is divided into the forward 
cycle consistency represented by the solid line and the 
backward cycle consistency represented by the dashed 
line. The purpose of the forward cycle consistency is to 
bring each input from domain x back to the output xො 
after passing through the generator G and the generator 
F. The backward is in the similar way. In addition, the 
cycle-consistency cost function is introduced between 

input x (or y) and output xො  (or yො ) to optimize two 
generators. 

For the adversarial cost function, the discriminator D୷ 
is used to discriminate the estimated data yො  when the 
training data of domain x passing through the generator 
G is false and the training data of domain y is true, we 
can describe data distribution of domain x and y as 
x~pdata(x) and y~pdata(y), respectively. The training is 
done through minimization of adversarial loss between 
the generator G(x)  which learns a mapping from x to y 

and the discriminator yD (y) . Thus, the adversarial cost 

function can be defined as follows according to [12]: 

 
data

data

GAN y y p (y) y

x p (x) y

L G,D , x, y E log D (y)

E log(1 D (G(x)))

   
   





   (1) 

where symbol E ( )  denotes the expectation about all 

the inputs of data domain x or y. D୷(y) represents the 
probability that y came from the real data rather than 
generator’s distribution. This adversarial cost function 
implies that G attempts to generate output G(x) that are 
close to the value of domain y and the discriminator Dy 
aims to distinguish output yො generated by G and input x. 
Dy(y) is the average prediction result that y passes 
through the discriminator network.  G aims to minimize 
this cost function against the adversary Dy that tries to 
maximize cost function, that is, the generator G is 
obtained as follows: 

y

*
GAN yG D

G min max L (G,D , x, y)                 (2) 

Given generator F and discriminator Dx, similar to (1), 
the second adversarial cost function LGAN(F, Dx, y, x) 
can be defined as well and the generator F is obtained as 
follows: 

x

*
GAN x

F D
F min max L (F, D , y, x)                  (3) 

The optimal adversarial cost function could make the 
outputs of the generators G and F have same 
distribution as the target domains of y and x, 
respectively. However, due to the infinitely great of 
domains y and x, the network may map an input value 
to a random value of target domain. In order to reduce 
dynamic range of the mapping operation, the best way is 
to make the mapping operation cyclically consistent. 
We use F to translate ŷ back to the domain x, and 

constrain ˆF(y G(x)) to be close to the input x. The 

similar processing is for generator G. Thus, the cycle-
consistent cost function can be defined as follows [13]: 

 
data

data

cyc x p (x) 1

y p (y) 1

L G,F E F(G(x)) x

E G(F(y)) y

   
   





            (4) 

where 
1
  means the L1 norm [14].  

Combing three cost functions, the overall cost 
function can be defined as follows: 

 
Fig. 1   Training procedure of the CycleGAN 
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x y GAN y

GAN x

cyc

L(G,F, D ,D ) L (G,D , x, y)

L (F,D , y, x)

L (G,F)






             (5) 

where constant  is used to control relative 
importance of cycle-consistent cost function. Finally, 
the estimated two generators are solved as follows: 

x y
x yG,F D ,D

G ,F arg min max L(G,F,D ,D )               (6) 

The above CycleGAN can be implemented by 
training two auto-encoders that have special internal 
structure, that is, the input can be mapped to itself 
through intermediate presentation layer. This setup can 
also be seen as a special case of adversarial auto-
encoder which uses the adversarial loss to train the 
bottleneck layer to match any target distribution. 

B. Modification of the CycleGAN structure 

In order to apply the CycleGAN in the speech 
enhancement system under the unpaired training data, 
two generators G and F are combined with the modified 
DNN structure and the identity-mapping loss given in 
[15] is adopted in the CycleGAN.  
Modified-DNN: Here, two generators both employ the 
modified-DNN structure in our method, in which the 
generator G transforms noisy speech into clean speech 
and the generator F transforms clean speech into noisy 
speech. Fig. 2 shows the architecture of the generator G. 
In the Fig. 2, ( {1, , }) …

l
w l L  is the weights between 

two adjacent layers, L is the number of hidden layers. 
The original output layer, ( {1, , }) …

l
h l L  is the output 

of the hidden layer. Given the input feature, namely 
logarithmic power spectrum (LPS) of noisy speech, the 
generator G could predict both speech power spectrum 
ˆ ( )sP f  and noise power spectrum ˆ ( )nP f . Thus, the Wiener 

filter can be embedded in the network to obtain 
magnitude spectrum S(f) of the enhanced speech, that is, 
S(f)=Y(f)H(f) where Y(f) is the magnitude spectrum of 
noisy speech and H(f) is the transfer function of Wiener 
filter.  
Identity-mapping loss: The two generators are used to 
data generation from one domain to another. If we ask 
an input of a domain to pass through any generator, the 
output of generator should fall in the same domain. 
Thus, we can calculate the loss between input and 
output using the identity mapping that could preserve 
speech components without relying on extra modules. In 
addition, introducing additional identity-mapping loss 
encourages mapping to preserve a combination between 
the input x (or y) and output F(x) (or G(y)).  When a 
sample of the target domain is provided as input, the 
identity loss function is defined as： 

data

data

id y p (y) 1

x p (x) 1

L (G,F) E [ G(y) y ]

E [ F(x) x ]

 

 




                 (7) 

The effectiveness of (7) has been proven in [11]. 

Because of the instability of the training process and 
vanishing gradient problem, the least-squares approach 
[17] is used instead of the cross-entropy loss in (1). 
Thus, (1) is changed to the following form:  

data (y)

data

2
GAN Y y p y

2
x p (x) y

L (G, D , X, Y) E [(D (y) 1) ]

E [(D (G(x))) ]

 







       (8) 

C. The proposed speech enhancement system 

A block diagram of the proposed speech enhancement 
system is illustrated in Fig.3. The generators and 
discriminators are trained through adversarial way. In 
the training process, the goal of the generator is to 
generate real data to fool the discriminator, and the goal 
of the discriminator is to separate the generated data 
from the real data. In this way, the generator and the 
discriminator form a dynamic adversarial process. The 
proposed method contains two stages: training stage and 
enhancement stage. 

In the training stage, for the forward cycle process, 
the LPS and magnitude spectrum of noisy speech are 
inputted into the generator G to estimate magnitude 
spectrum of clean speech. The LPS and magnitude 
spectrum of clean speech are inputted into the generator 
F to estimate magnitude spectrum of noisy speech. Two 
generators are optimized by comparing the cycle-
consistency loss between the estimated magnitude 
spectrum of noisy speech and the original magnitude 
spectrum of noisy speech. For the backward cycle 
process, the estimated LPS and magnitude spectrum of 
clean speech are then used as the input of the generator 
F to obtain magnitude spectrum of the estimated noisy 
speech, this magnitude spectrum of the estimated noisy 
speech is inputted into the generator G again to obtain 
the magnitude spectrum of the estimated clean speech. 
Two generators are optimized again by comparing the 
cycle-consistency loss between the magnitude spectra of 
the estimated clean speech and original clean speech. 

Fig. 2   The architecture of the generator G. 
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The discriminator Dy is used to discriminate magnitude 
spectrum of clean speech and magnitude spectrum of 
the estimated clean speech generated by the generator G. 
The discriminator Dx is used to discriminate real 
magnitude spectrum of noisy speech and the magnitude 
spectrum of the estimated noisy speech generated by the 
generator F. 

In the enhancement stage, the magnitude spectrum 
and LPS of noisy speech are used as the input of the 
well-trained CycleGAN to produce enhanced magnitude 
spectrum of noisy speech. Combined with noisy speech 
phase [18] and an inverse short time Fourier transform 
(ISTFT), the enhanced speech is obtained.  

III. EXPERIMENTS 

A. Datasets used for experiments 

The proposed framework is evaluated on the TIMIT [19] 
corpus. In the experiment, the noisy speech and the 
clean speech are trained without paired, that is, they are 
not the paired one-one. We chose a quarter of the 4620 
sentences from different speakers as the clean speech of 
the training set. The 102 noise types including 100 kinds 
of environmental noise, F16 and Babble noise are used 
as the noise of the training set. In addition, the other 
three-quarters of the 4620 sentences of clean speech and 
102 noises are artificially mixed at four different signal-
to-noise ratio (SNR) levels from -5 to 10dB spaced by 
5dB, and then an 8-hour noisy training set is built. All 
signals are down sampled to 8 kHz. 

The test set contains around 200 sentences from the 
TIMIT [19] test set. The noisy speech has 4 types of 
noises in which the two noises (Office, Babble) are in 
the training set and others two noises (Street, Factory) 
are outside the training set with 4 different SNR ranging 
from -5 to 10 dB by step of 5dB. The length of the 
testing set is about 10 minutes.  

B. Experimental Setups 

The LPS of noisy speech and the magnitude spectrum of 
noisy speech are extracted on a 32ms hamming widow 
with a half window overlap. The extracted LPS are 
normalized to have zero mean and unit variance. The 
modified-DNN model with 3 hidden layers including 
2048 neurons are used for two generators. The 
feedforward multilayer perceptions (MLPs) is used for 
two discriminators to directly maps noisy speech LPS 
into magnitude spectrum of clean speech as in [20]. All 
the CycleGAN models used are implemented with 
PyTorch [21]. The networks are trained with the 
Adaptive Moment Estimation (Adam) algorithm [22] 
and a learning rate of 0.0002. The Rectified linear unit 
(ReLU) [23] is used as the activation function, and the 
mini-batch size is set to 128 for both G and D. The total 
epoch is 100 by step of 10 to update the generators and 
the discriminators. 

Under the unpaired training data, our proposed 
method denoted as CycleGAN for comparison with 
reference method denoted as GAN without cycle 
consistency cost function. In addition, under the paired 
data, our proposed method is compared with the GAN 
network without the cycle consistency cost function and 
the GAN network denoted as GAN+fc that only has the 
forward cycle. 

C. Experimental Results 

We evaluate the enhance performance in terms of 
Perceptual Evaluation of Speech Quality (PESQ) [24] 
and Short-Time Objective Intelligibility (STOI) [25] in 
which the STOI is able to accurately predict the 
intelligibility of speech by the verification of 
experiments [25]. 

Fig.4 shows the average PESQ scores for the 
proposed method and the reference methods with the 
unpaired data at four different SNR levels. In the case    

 
Fig. 3   The block diagram of proposed speech enhancement system. 
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Fig. 4   The average of PESQ scores of DNN, GAN and CycleGAN. 

 
Fig. 5   The average of STOI scores of noisy speech, GAN, GAN+fc 

and CycleGAN at four different SNR levels. 

that there is no one-to-one correspondence between 
noisy speech and clean speech, the proposed method 
and the reference methods are trained with unpaired 
training data. We find that the proposed method can 
effectively improve the speech quality by using the 
GAN network with cycle consistency loss function. The 
quality of the GAN network without the cycle 
consistency cost function is not much different from the 
traditional DNN method. This implies that for the 
unpaired data, the introduced cycle-consistency cost 
function does not lead a significant loss while transfer 
the input from one domain to another domain. Here, we 
do not take a comparison with the GAN+fc-based 
method for the unpaired data, because it was found 
through experiments that when the forward or backward 
cycle consistent occurs only, the instability and the 
mode collapse of the training are prone to be happened. 

Fig.5 reports a comparison of the average PESQ 
scores under four noise types and four SNR levels in the 
paired data. We find that the proposed method is better 
than the reference methods under various SNR levels. In 
addition, the GAN network with only the forward cycle-
consistency cost function is better than the GAN-only 
method. The GAN network with both the forward cycle 
loss and the backward cycle is better than the GAN+fc 
approach. This shows that even for paired data, the 
introduction of forward and backward cycle-consistency 
can improve network performance. 

 
Fig. 6   The average of STOI scores of noisy speech, GAN, GAN+fc 

and CycleGAN at four different SNR levels. 

In order to further reflect the effectiveness of the 
proposed method, the average intelligibility scores of 
the proposed method and the reference methods are 
compared under four different signal-to-noise ratios. It 
can be found from Fig. 6 that the proposed method is 
also improved compared with the reference methods, 
and the effect is obvious at the lower SNR levels. Under 
the condition of high SNR, no serious distortion of the 
speech is caused, and the influence of noise on the 
intelligibility is small, so the results are similar. 

IV. CONCLUSIONS 

In this paper, we proposed a speech enhancement 
method based on cycle-consistent adversarial networks 
with unpaired training data. Because the paired speech 
data is difficult to obtain or expensive in real complex 
scenarios, we found that when the noisy speech and the 
clean speech do not correspond to each other, the speech 
is well preserved while the noise is effectively 
suppressed. By comparing with the reference methods, 
the proposed method can better improve the speech 
quality and intelligibility. In the future, we will integrate 
spatial and temporal information into the network, 
because spatial and temporal information is an integral 
sensory component of human hearing. 

ACKNOWLEDGEMENTS 

This work was supported by the National Natural 
Science Foundation of China (Grant No. 61831019, No. 
61471014 and No. 61231015).  

REFERENCES 

[1] P. C. Loizou, “Speech Enhancement: Theory and 
Practice,” 2nd ed. Boca Raton, FL, USA: CRC Press, Inc., 
2013. 

[2] M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement 
of speech corrupted by acoustic noise,” in Proc. of the Int. 
Conf. on Acoustics, Speech, and Signal Processing 
(ICASSP), vol. 4, Apr 1979, pp. 208–211. 

[3] J. Lim and A. Oppenheim, “All-pole modeling of 
degraded speech,” IEEE Trans. on Acoustics, Speech, 
and Signal Processing, vol. 26, no. 3, pp. 197–210, Jun 
1978. 

1.5
1.8
2.1
2.4
2.7

3

-5 0 5 10

SNR(dB)

The average PESQ scores for unpaired data

DNN GAN CycleGAN

1.5
1.8
2.1
2.4
2.7

3

-5 0 5 10

SNR(dB)

The average of PESQ scores

Noisy GAN GAN+fc CycleGAN

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

-5 0 5 10

SNR(dB)

The average of STOI scores

Noisy GAN GAN+fc CycleGAN

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

882



[4] Y. Ephraim, “Statistical-model-based speech 
enhancement systems,” Proceedings of the IEEE, vol. 80, 
no. 10, pp. 1526–1555, Oct 1992. 

[5] M. Dendrinos, S. Bakamidis, and G. Carayannis, “Speech 
enhancement from noise: A regenerative approach,” 
Speech Communication, vol. 10, no. 1, pp. 45–57, 1991. 

[6] Y. Ephraim and H. L. Van Trees, “A signal subspace 
approach for speech enhancement,” IEEE Trans. on 
speech and audio processing, vol. 3, no. 4, pp. 251–266, 
1995. 

[7] Y. Wang, A. Narayanan, and D. Wang, " On training 
targets for supervised speech separation," IEEE Trans. on 
Audio, Speech, and Language Processing, vol. 22, no. 12, 
pp. 1849-1858,2014. 

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, 
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron 
Courville, and Yoshua Bengio, “Generative adversarial 
nets,” in International Conference on Neural Information 
Processing Systems, 2014, pp. 2672–2680. 

[9] Santiago Pascual, Antonio Bonafonte, and Joan Serrà, 
“SEGAN: speech enhancement generative adversarial 
network,” CoRR, 2017. 

[10] Aäron van den Oord, Sander Dieleman, Heiga Zen, 
Karen Simonyan, Oriol Vinyals, Alexander Graves, Nal 
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu, 
“Wavenet: A generative model for raw audio,” in Arxiv, 
2016. 

[11] J. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired 
Image-to-Image Translation Using Cycle-Consistent 
Adversarial Networks," 2017 IEEE International 
Conference on Computer Vision (ICCV), Venice, 2017, 
pp. 2242-2251. 

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. 
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 
Generative adversarial nets. In NIPS, 2014. 

[13] T. Zhou, P. Krähenbühl, M. Aubry, Q. Huang and A. A. 
Efros, "Learning Dense Correspondence via 3D-Guided 
Cycle Consistency," 2016 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
2016, pp. 117-126. 

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A 
Efros, “Image-to-image translation with conditional 
adversarial networks,” arxiv, 2016. 

[15] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised 
cross-domain image generation,” in ICLR, 2017. 

[16] Y. Xu, J. Du, L. R. Dai, and C. H. Lee, “A regression 
approach to speech enhancement based on deep neural 
networks,” IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, vol. 23, no. 1, pp. 7–19, 2015. 

[17] Xudong Mao, Qing Li, and et al., “Least squares 
generative adversarial networks,” arXiv:1611.04076, 
2016. 

[18] D. Wang and J. Lim, “The unimportance of phase in 
speech enhancement,” IEEE Trans. on Acoustics, Speech, 
and Signal Processing, vol. 30, no. 4, pp. 679–681, Aug 
1982. 

[19] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, 
and D. S. Pallett, “DARPA TIMIT acoustic-phonetic 
continous speech corpus CD-ROM. NIST speech disc 1-
1.1,” NASA STI/Recon technical report n, vol. 93, 1993. 

[20] Y. Xu, J. Du, L. R. Dai, and C. H. Lee, “A regression 
approach to speech enhacement based on deep neural 
networks,” IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, vol. 23, no. 1, pp. 7–19, 2015. 

[21] Adam Paszke, Sam Gross, and Soumith Chintala, 
“Pytorch,” 2017. 

[22] Kingma, Diederik P, and J. Ba. "Adam: A Method for 
Stochastic Optimization.", Computer Science, 2014. 

[23] Vinod Nair and Geoffrey E. Hinton, “Rectified linear 
units improve restricted boltzmann machines,” in 
International Conference on International Conference on 
Machine Learning, 2010, pp. 807–814. 

[24] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. 
Hekstra, “Perceptual evaluation of speech quality 
(PESQ)-a new method for speech quality assessment of 
telephone networks and codecs,” in Acoustics, Speech, 
and Signal Processing, 2001. Proceedings.(ICASSP'01). 
2001 IEEE International Conference on, 2001, pp. 749-
752.  

[25] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, 
“An algorithm for intelligibility prediction of time–
frequency weighted noisy speech,” IEEE Transactions on 
Audio, Speech, and Language Processing, vol. 19, no. 7, 
pp. 2125-2136, 2011. 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

883




